65edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 239563915 - Original comment: **
Yourmusic Productions (talk | contribs)
m Music: fix formatting
 
(74 intermediate revisions by 30 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-30 17:59:56 UTC</tt>.<br>
: The original revision id was <tt>239563915</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
----


=&lt;span style="color: #750063;"&gt;65 tone equal temperament&lt;/span&gt;=
== Theory ==
65et can be characterized as the temperament which [[tempering out|tempers out]] 32805/32768 ([[schisma]]), 78732/78125 ([[sensipent comma]]), 393216/390625 ([[würschmidt comma]]), and {{monzo| -13 17 -6 }} ([[graviton]]). In the [[7-limit]], there are two different maps; the first is {{val| 65 103 151 '''182''' }} (65), tempering out [[126/125]], [[245/243]] and [[686/675]], so that it [[support]]s [[sensi]], and the second is {{val| 65 103 151 '''183''' }} (65d), tempering out [[225/224]], [[3125/3087]], [[4000/3969]] and [[5120/5103]], so that it supports [[garibaldi]]. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[würschmidt]] temperament (wurschmidt and worschmidt) these two mappings provide.


//65edo// divides the [[octave]] into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]], 393216/390625. In the [[7-limit]], there are two different maps; the first is &lt;65 103 151 182|, [[tempering out]] 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide.
65edo approximates the intervals [[3/2]], [[5/4]], [[11/8]], [[19/16]], [[23/16]], [[31/16]] and [[47/32]] well, so that it does a good job representing the 2.3.5.11.19.23.31.47 [[just intonation subgroup]]. To this one may want to add [[17/16]], [[29/16]] and [[43/32]], giving the [[47-limit]] no-7's no-13's no-37's no-41's subgroup 2.3.5.11.17.19.23.29.31.43.47. In this sense it is a tuning of [[schismic]]/[[nestoria]] that focuses on the very primes that [[53edo]] neglects (which instead elegantly connects primes 7, 13, 37, and 41 to nestoria). Also of interest is the [[19-limit]] [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as the [[zeta]] edo [[130edo]].


65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]].
=== Prime harmonics ===
{{Harmonics in equal|65|intervals=prime|columns=15}}


=Intervals=  
=== Subsets and supersets ===
|| Degrees of 65-EDO || Cents value ||
65edo contains [[5edo]] and [[13edo]] as subsets. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [[Andrew Heathwaite]]'s composition [https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded ''Rubble: a Xenuke Unfolded''].
|| 0 || 0 ||
|| 1 || 18,4615 ||
|| 2 || 36,9231 ||
|| 3 || 55,3846 ||
|| 4 || 73,8462 ||
|| 5 || 92,3077 ||
|| 6 || 110,7692 ||
|| 7 || 129,2308 ||
|| 8 || 147,6923 ||
|| 9 || 166,1538 ||
|| 10 || 184,6154 ||
|| 11 || 203,0769 ||
|| 12 || 221,5385 ||
|| 13 || 240 ||
|| 14 || 258,4615 ||
|| 15 || 276,9231 ||
|| 16 || 295,3846 ||
|| 17 || 313,8462 ||
|| 18 || 332,3077 ||
|| 19 || 350,7692 ||
|| 20 || 369,2308 ||
|| 21 || 387,6923 ||
|| 22 || 406,1538 ||
|| 23 || 424,6154 ||
|| 24 || 443,0769 ||
|| 25 || 461,5385 ||
|| 26 || 480 ||
|| 27 || 498,4615 ||
|| 28 || 516,9231 ||
|| 29 || 535,3846 ||
|| 30 || 553,8462 ||
|| 31 || 572,3077 ||
|| 32 || 590,7692 ||
|| 33 || 609,2308 ||
|| 34 || 627,6923 ||
|| 35 || 646,1538 ||
|| 36 || 664,6154 ||
|| 37 || 683,0769 ||
|| 38 || 701,5385 ||
|| 39 || 720 ||
|| 40 || 738,4615 ||
|| 41 || 756,9231 ||
|| 42 || 775,3846 ||
|| 43 || 793,8462 ||
|| 44 || 812,3077 ||
|| 45 || 830,7692 ||
|| 46 || 849,2308 ||
|| 47 || 867,6923 ||
|| 48 || 886,1538 ||
|| 49 || 904,6154 ||
|| 50 || 923,0769 ||
|| 51 || 941,5385 ||
|| 52 || 960 ||
|| 53 || 978,4615 ||
|| 54 || 996,9231 ||
|| 55 || 1015,3846 ||
|| 56 || 1033,8462 ||
|| 57 || 1052,3077 ||
|| 58 || 1070,7692 ||
|| 59 || 1089,2308 ||
|| 60 || 1107,6923 ||
|| 61 || 1126,1538 ||
|| 62 || 1144,6154 ||
|| 63 || 1163,0769 ||
|| 64 || 1181,5385 ||


=Scales=
[[130edo]], which doubles its, corrects its approximation to harmonics 7 and 13.
[[photia7]]
[[photia12]]</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;65edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:6:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:6 --&gt;&lt;!-- ws:start:WikiTextTocRule:7: --&gt;&lt;a href="#x65 tone equal temperament"&gt;65 tone equal temperament&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:7 --&gt;&lt;!-- ws:start:WikiTextTocRule:8: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt;
&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;hr /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x65 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #750063;"&gt;65 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
&lt;em&gt;65edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the &lt;a class="wiki_link" href="/schisma"&gt;schisma&lt;/a&gt;, 32805/32768, the &lt;a class="wiki_link" href="/sensipent%20comma"&gt;sensipent comma&lt;/a&gt;, 78732/78125, and the &lt;a class="wiki_link" href="/wuerschmidt%20comma"&gt;wuerschmidt comma&lt;/a&gt;, 393216/390625. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, there are two different maps; the first is &amp;lt;65 103 151 182|, &lt;a class="wiki_link" href="/tempering%20out"&gt;tempering out&lt;/a&gt; 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &amp;lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit &lt;a class="wiki_link" href="/wuerschmidt%20temperament"&gt;wuerschmidt temperament&lt;/a&gt; (wurschmidt and worschmidt) these two mappings provide.&lt;br /&gt;
&lt;br /&gt;
65edo approximates the intervals &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;, &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;, &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt; well, so that it does a good job representing the 2.3.5.11.19 &lt;a class="wiki_link" href="/just%20intonation%20subgroup"&gt;just intonation subgroup&lt;/a&gt;. To this one may want to add 13/8 and 17/16, giving the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*65 subgroup&lt;/a&gt; 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
== Intervals ==
    &lt;tr&gt;
{| class="wikitable center-all right-2 left-3"
        &lt;td&gt;Degrees of 65-EDO&lt;br /&gt;
|-
&lt;/td&gt;
! &#35;
        &lt;td&gt;Cents value&lt;br /&gt;
! [[Cent]]s
&lt;/td&gt;
! Approximate ratios<ref group="note">{{sg|limit=2.3.5.11.13/7.17.19.23.29.31.47 subgroup}}</ref>
    &lt;/tr&gt;
! colspan="2" | [[Ups and downs notation]]
    &lt;tr&gt;
|-
        &lt;td&gt;0&lt;br /&gt;
| 0
&lt;/td&gt;
| 0.00
        &lt;td&gt;0&lt;br /&gt;
| 1/1
&lt;/td&gt;
| P1
    &lt;/tr&gt;
| D
    &lt;tr&gt;
|-
        &lt;td&gt;1&lt;br /&gt;
| 1
&lt;/td&gt;
| 18.46
        &lt;td&gt;18,4615&lt;br /&gt;
| 81/80, 88/87, 93/92, 94/93, 95/94, 96/95, 100/99, 121/120, 115/114, 116/115, 125/124
&lt;/td&gt;
| ^1
    &lt;/tr&gt;
| ^D
    &lt;tr&gt;
|-
        &lt;td&gt;2&lt;br /&gt;
| 2
&lt;/td&gt;
| 36.92
        &lt;td&gt;36,9231&lt;br /&gt;
| 45/44, 46/45, 47/46, 48/47, 55/54, 128/125
&lt;/td&gt;
| ^^1
    &lt;/tr&gt;
| ^^D
    &lt;tr&gt;
|-
        &lt;td&gt;3&lt;br /&gt;
| 3
&lt;/td&gt;
| 55.38
        &lt;td&gt;55,3846&lt;br /&gt;
| 30/29, 31/30, 32/31, 33/32, 34/33
&lt;/td&gt;
| vvm2
    &lt;/tr&gt;
| vvEb
    &lt;tr&gt;
|-
        &lt;td&gt;4&lt;br /&gt;
| 4
&lt;/td&gt;
| 73.85
        &lt;td&gt;73,8462&lt;br /&gt;
| 23/22, 24/23, 25/24, 47/45
&lt;/td&gt;
| vm2
    &lt;/tr&gt;
| vEb
    &lt;tr&gt;
|-
        &lt;td&gt;5&lt;br /&gt;
| 5
&lt;/td&gt;
| 92.31
        &lt;td&gt;92,3077&lt;br /&gt;
| 18/17, 19/18, 20/19, 58/55, 135/128, 256/243
&lt;/td&gt;
| m2
    &lt;/tr&gt;
| Eb
    &lt;tr&gt;
|-
        &lt;td&gt;6&lt;br /&gt;
| 6
&lt;/td&gt;
| 110.77
        &lt;td&gt;110,7692&lt;br /&gt;
| 16/15, 17/16, 33/31
&lt;/td&gt;
| A1/^m2
    &lt;/tr&gt;
| D#/^Eb
    &lt;tr&gt;
|-
        &lt;td&gt;7&lt;br /&gt;
| 7
&lt;/td&gt;
| 129.23
        &lt;td&gt;129,2308&lt;br /&gt;
| 14/13, 27/25, 55/51
&lt;/td&gt;
| v~2
    &lt;/tr&gt;
| ^^Eb
    &lt;tr&gt;
|-
        &lt;td&gt;8&lt;br /&gt;
| 8
&lt;/td&gt;
| 147.69
        &lt;td&gt;147,6923&lt;br /&gt;
| 12/11, 25/23
&lt;/td&gt;
| ~2
    &lt;/tr&gt;
| vvvE
    &lt;tr&gt;
|-
        &lt;td&gt;9&lt;br /&gt;
| 9
&lt;/td&gt;
| 166.15
        &lt;td&gt;166,1538&lt;br /&gt;
| 11/10, 32/29
&lt;/td&gt;
| ^~2
    &lt;/tr&gt;
| vvE
    &lt;tr&gt;
|-
        &lt;td&gt;10&lt;br /&gt;
| 10
&lt;/td&gt;
| 184.62
        &lt;td&gt;184,6154&lt;br /&gt;
| 10/9, 19/17
&lt;/td&gt;
| vM2
    &lt;/tr&gt;
| vE
    &lt;tr&gt;
|-
        &lt;td&gt;11&lt;br /&gt;
| 11
&lt;/td&gt;
| 203.08
        &lt;td&gt;203,0769&lt;br /&gt;
| 9/8, 64/57
&lt;/td&gt;
| M2
    &lt;/tr&gt;
| E
    &lt;tr&gt;
|-
        &lt;td&gt;12&lt;br /&gt;
| 12
&lt;/td&gt;
| 221.54
        &lt;td&gt;221,5385&lt;br /&gt;
| 17/15, 25/22, 33/29, 58/51
&lt;/td&gt;
| ^M2
    &lt;/tr&gt;
| ^E
    &lt;tr&gt;
|-
        &lt;td&gt;13&lt;br /&gt;
| 13
&lt;/td&gt;
| 240.00
        &lt;td&gt;240&lt;br /&gt;
| 23/20, 31/27, 38/33, 54/47, 55/48
&lt;/td&gt;
| ^^M2
    &lt;/tr&gt;
| ^^E
    &lt;tr&gt;
|-
        &lt;td&gt;14&lt;br /&gt;
| 14
&lt;/td&gt;
| 258.46
        &lt;td&gt;258,4615&lt;br /&gt;
| 22/19, 29/25, 36/31, 64/55
&lt;/td&gt;
| vvm3
    &lt;/tr&gt;
| vvF
    &lt;tr&gt;
|-
        &lt;td&gt;15&lt;br /&gt;
| 15
&lt;/td&gt;
| 276.92
        &lt;td&gt;276,9231&lt;br /&gt;
| 20/17, 27/23, 34/29, 75/64
&lt;/td&gt;
| vm3
    &lt;/tr&gt;
| vF
    &lt;tr&gt;
|-
        &lt;td&gt;16&lt;br /&gt;
| 16
&lt;/td&gt;
| 295.38
        &lt;td&gt;295,3846&lt;br /&gt;
| 19/16, 32/27
&lt;/td&gt;
| m3
    &lt;/tr&gt;
| F
    &lt;tr&gt;
|-
        &lt;td&gt;17&lt;br /&gt;
| 17
&lt;/td&gt;
| 313.85
        &lt;td&gt;313,8462&lt;br /&gt;
| 6/5, 55/46
&lt;/td&gt;
| ^m3
    &lt;/tr&gt;
| ^F
    &lt;tr&gt;
|-
        &lt;td&gt;18&lt;br /&gt;
| 18
&lt;/td&gt;
| 332.31
        &lt;td&gt;332,3077&lt;br /&gt;
| 23/19, 40/33
&lt;/td&gt;
| v~3
    &lt;/tr&gt;
| ^^F
    &lt;tr&gt;
|-
        &lt;td&gt;19&lt;br /&gt;
| 19
&lt;/td&gt;
| 350.77
        &lt;td&gt;350,7692&lt;br /&gt;
| 11/9, 27/22, 38/31
&lt;/td&gt;
| ~3
    &lt;/tr&gt;
| ^^^F
    &lt;tr&gt;
|-
        &lt;td&gt;20&lt;br /&gt;
| 20
&lt;/td&gt;
| 369.23
        &lt;td&gt;369,2308&lt;br /&gt;
| 26/21, 47/38, 68/55
&lt;/td&gt;
| ^~3
    &lt;/tr&gt;
| vvF#
    &lt;tr&gt;
|-
        &lt;td&gt;21&lt;br /&gt;
| 21
&lt;/td&gt;
| 387.69
        &lt;td&gt;387,6923&lt;br /&gt;
| 5/4, 64/51
&lt;/td&gt;
| vM3
    &lt;/tr&gt;
| vF#
    &lt;tr&gt;
|-
        &lt;td&gt;22&lt;br /&gt;
| 22
&lt;/td&gt;
| 406.15
        &lt;td&gt;406,1538&lt;br /&gt;
| 19/15, 24/19, 29/23, 34/27, 81/64
&lt;/td&gt;
| M3
    &lt;/tr&gt;
| F#
    &lt;tr&gt;
|-
        &lt;td&gt;23&lt;br /&gt;
| 23
&lt;/td&gt;
| 424.62
        &lt;td&gt;424,6154&lt;br /&gt;
| 23/18, 32/25
&lt;/td&gt;
| ^M3
    &lt;/tr&gt;
| ^F#
    &lt;tr&gt;
|-
        &lt;td&gt;24&lt;br /&gt;
| 24
&lt;/td&gt;
| 443.08
        &lt;td&gt;443,0769&lt;br /&gt;
| 22/17, 31/24, 40/31, 128/99
&lt;/td&gt;
| ^^M3
    &lt;/tr&gt;
| ^^F#
    &lt;tr&gt;
|-
        &lt;td&gt;25&lt;br /&gt;
| 25
&lt;/td&gt;
| 461.54
        &lt;td&gt;461,5385&lt;br /&gt;
| 30/23, 47/36, 72/55
&lt;/td&gt;
| vv4
    &lt;/tr&gt;
| vvG
    &lt;tr&gt;
|-
        &lt;td&gt;26&lt;br /&gt;
| 26
&lt;/td&gt;
| 480.00
        &lt;td&gt;480&lt;br /&gt;
| 29/22, 33/25, 62/47
&lt;/td&gt;
| v4
    &lt;/tr&gt;
| vG
    &lt;tr&gt;
|-
        &lt;td&gt;27&lt;br /&gt;
| 27
&lt;/td&gt;
| 498.46
        &lt;td&gt;498,4615&lt;br /&gt;
| 4/3
&lt;/td&gt;
| P4
    &lt;/tr&gt;
| G
    &lt;tr&gt;
|-
        &lt;td&gt;28&lt;br /&gt;
| 28
&lt;/td&gt;
| 516.92
        &lt;td&gt;516,9231&lt;br /&gt;
| 23/17, 27/20, 31/23
&lt;/td&gt;
| ^4
    &lt;/tr&gt;
| ^G
    &lt;tr&gt;
|-
        &lt;td&gt;29&lt;br /&gt;
| 29
&lt;/td&gt;
| 535.38
        &lt;td&gt;535,3846&lt;br /&gt;
| 15/11, 34/25, 64/47
&lt;/td&gt;
| v~4
    &lt;/tr&gt;
| ^^G
    &lt;tr&gt;
|-
        &lt;td&gt;30&lt;br /&gt;
| 30
&lt;/td&gt;
| 553.85
        &lt;td&gt;553,8462&lt;br /&gt;
| 11/8, 40/29, 62/45
&lt;/td&gt;
| ~4
    &lt;/tr&gt;
| ^^^G
    &lt;tr&gt;
|-
        &lt;td&gt;31&lt;br /&gt;
| 31
&lt;/td&gt;
| 572.31
        &lt;td&gt;572,3077&lt;br /&gt;
| 25/18, 32/23
&lt;/td&gt;
| ^~4/vd5
    &lt;/tr&gt;
| vvG#/vAb
    &lt;tr&gt;
|-
        &lt;td&gt;32&lt;br /&gt;
| 32
&lt;/td&gt;
| 590.77
        &lt;td&gt;590,7692&lt;br /&gt;
| 24/17, 31/22, 38/27, 45/32
&lt;/td&gt;
| vA4/d5
    &lt;/tr&gt;
| vG#/Ab
    &lt;tr&gt;
|-
        &lt;td&gt;33&lt;br /&gt;
| 33
&lt;/td&gt;
| 609.23
        &lt;td&gt;609,2308&lt;br /&gt;
| 17/12, 27/19, 44/31, 64/45
&lt;/td&gt;
| A4/^d5
    &lt;/tr&gt;
| G#/^Ab
    &lt;tr&gt;
|-
        &lt;td&gt;34&lt;br /&gt;
| 34
&lt;/td&gt;
| 627.69
        &lt;td&gt;627,6923&lt;br /&gt;
| 36/25, 23/16
&lt;/td&gt;
| ^A4/v~5
    &lt;/tr&gt;
| ^G#/^^Ab
    &lt;tr&gt;
|-
        &lt;td&gt;35&lt;br /&gt;
| 35
&lt;/td&gt;
| 646.15
        &lt;td&gt;646,1538&lt;br /&gt;
| 16/11, 29/20, 45/31
&lt;/td&gt;
| ~5
    &lt;/tr&gt;
| vvvA
    &lt;tr&gt;
|-
        &lt;td&gt;36&lt;br /&gt;
| 36
&lt;/td&gt;
| 664.62
        &lt;td&gt;664,6154&lt;br /&gt;
| 22/15, 25/17, 47/32
&lt;/td&gt;
| ^~5
    &lt;/tr&gt;
| vvA
    &lt;tr&gt;
|-
        &lt;td&gt;37&lt;br /&gt;
| 37
&lt;/td&gt;
| 683.08
        &lt;td&gt;683,0769&lt;br /&gt;
| 34/23, 40/27, 46/31
&lt;/td&gt;
| v5
    &lt;/tr&gt;
| vA
    &lt;tr&gt;
|-
        &lt;td&gt;38&lt;br /&gt;
| 38
&lt;/td&gt;
| 701.54
        &lt;td&gt;701,5385&lt;br /&gt;
| 3/2
&lt;/td&gt;
| P5
    &lt;/tr&gt;
| A
    &lt;tr&gt;
|-
        &lt;td&gt;39&lt;br /&gt;
| 39
&lt;/td&gt;
| 720.00
        &lt;td&gt;720&lt;br /&gt;
| 44/29, 50/33, 47/31
&lt;/td&gt;
| ^5
    &lt;/tr&gt;
| ^A
    &lt;tr&gt;
|-
        &lt;td&gt;40&lt;br /&gt;
| 40
&lt;/td&gt;
| 738.46
        &lt;td&gt;738,4615&lt;br /&gt;
| 23/15, 55/36, 72/47
&lt;/td&gt;
| ^^5
    &lt;/tr&gt;
| ^^A
    &lt;tr&gt;
|-
        &lt;td&gt;41&lt;br /&gt;
| 41
&lt;/td&gt;
| 756.92
        &lt;td&gt;756,9231&lt;br /&gt;
| 17/11, 48/31, 31/20, 99/64
&lt;/td&gt;
| vvm6
    &lt;/tr&gt;
| vvBb
    &lt;tr&gt;
|-
        &lt;td&gt;42&lt;br /&gt;
| 42
&lt;/td&gt;
| 775.38
        &lt;td&gt;775,3846&lt;br /&gt;
| 25/16, 36/23
&lt;/td&gt;
| vm6
    &lt;/tr&gt;
| vBb
    &lt;tr&gt;
|-
        &lt;td&gt;43&lt;br /&gt;
| 43
&lt;/td&gt;
| 793.85
        &lt;td&gt;793,8462&lt;br /&gt;
| 19/12, 27/17, 30/19, 46/29, 128/81
&lt;/td&gt;
| m6
    &lt;/tr&gt;
| Bb
    &lt;tr&gt;
|-
        &lt;td&gt;44&lt;br /&gt;
| 44
&lt;/td&gt;
| 812.31
        &lt;td&gt;812,3077&lt;br /&gt;
| 8/5, 51/32
&lt;/td&gt;
| ^m6
    &lt;/tr&gt;
| ^Bb
    &lt;tr&gt;
|-
        &lt;td&gt;45&lt;br /&gt;
| 45
&lt;/td&gt;
| 830.77
        &lt;td&gt;830,7692&lt;br /&gt;
| 21/13, 55/34, 76/47
&lt;/td&gt;
| v~6
    &lt;/tr&gt;
| ^^Bb
    &lt;tr&gt;
|-
        &lt;td&gt;46&lt;br /&gt;
| 46
&lt;/td&gt;
| 849.23
        &lt;td&gt;849,2308&lt;br /&gt;
| 18/11, 31/19, 44/27
&lt;/td&gt;
| ~6
    &lt;/tr&gt;
| vvvB
    &lt;tr&gt;
|-
        &lt;td&gt;47&lt;br /&gt;
| 47
&lt;/td&gt;
| 867.69
        &lt;td&gt;867,6923&lt;br /&gt;
| 33/20, 38/23
&lt;/td&gt;
| ^~6
    &lt;/tr&gt;
| vvB
    &lt;tr&gt;
|-
        &lt;td&gt;48&lt;br /&gt;
| 48
&lt;/td&gt;
| 886.15
        &lt;td&gt;886,1538&lt;br /&gt;
| 5/3, 92/55
&lt;/td&gt;
| vM6
    &lt;/tr&gt;
| vB
    &lt;tr&gt;
|-
        &lt;td&gt;49&lt;br /&gt;
| 49
&lt;/td&gt;
| 904.62
        &lt;td&gt;904,6154&lt;br /&gt;
| 27/16, 32/19
&lt;/td&gt;
| M6
    &lt;/tr&gt;
| B
    &lt;tr&gt;
|-
        &lt;td&gt;50&lt;br /&gt;
| 50
&lt;/td&gt;
| 923.08
        &lt;td&gt;923,0769&lt;br /&gt;
| 17/10, 29/17, 46/27, 128/75
&lt;/td&gt;
| ^M6
    &lt;/tr&gt;
| ^B
    &lt;tr&gt;
|-
        &lt;td&gt;51&lt;br /&gt;
| 51
&lt;/td&gt;
| 941.54
        &lt;td&gt;941,5385&lt;br /&gt;
| 19/11, 31/18, 50/29, 55/32
&lt;/td&gt;
| ^^M6
    &lt;/tr&gt;
| ^^B
    &lt;tr&gt;
|-
        &lt;td&gt;52&lt;br /&gt;
| 52
&lt;/td&gt;
| 960.00
        &lt;td&gt;960&lt;br /&gt;
| 33/19, 40/23, 47/27, 54/31, 96/55
&lt;/td&gt;
| vvm7
    &lt;/tr&gt;
| vvC
    &lt;tr&gt;
|-
        &lt;td&gt;53&lt;br /&gt;
| 53
&lt;/td&gt;
| 978.46
        &lt;td&gt;978,4615&lt;br /&gt;
| 30/17, 44/25, 51/29, 58/33
&lt;/td&gt;
| vm7
    &lt;/tr&gt;
| vC
    &lt;tr&gt;
|-
        &lt;td&gt;54&lt;br /&gt;
| 54
&lt;/td&gt;
| 996.92
        &lt;td&gt;996,9231&lt;br /&gt;
| 16/9, 57/32
&lt;/td&gt;
| m7
    &lt;/tr&gt;
| C
    &lt;tr&gt;
|-
        &lt;td&gt;55&lt;br /&gt;
| 55
&lt;/td&gt;
| 1015.38
        &lt;td&gt;1015,3846&lt;br /&gt;
| 9/5, 34/19
&lt;/td&gt;
| ^m7
    &lt;/tr&gt;
| ^C
    &lt;tr&gt;
|-
        &lt;td&gt;56&lt;br /&gt;
| 56
&lt;/td&gt;
| 1033.85
        &lt;td&gt;1033,8462&lt;br /&gt;
| 20/11, 29/16
&lt;/td&gt;
| v~7
    &lt;/tr&gt;
| ^^C
    &lt;tr&gt;
|-
        &lt;td&gt;57&lt;br /&gt;
| 57
&lt;/td&gt;
| 1052.31
        &lt;td&gt;1052,3077&lt;br /&gt;
| 11/6, 46/25
&lt;/td&gt;
| ~7
    &lt;/tr&gt;
| ^^^C
    &lt;tr&gt;
|-
        &lt;td&gt;58&lt;br /&gt;
| 58
&lt;/td&gt;
| 1070.77
        &lt;td&gt;1070,7692&lt;br /&gt;
| 13/7, 50/27, 102/55
&lt;/td&gt;
| ^~7
    &lt;/tr&gt;
| vvC#
    &lt;tr&gt;
|-
        &lt;td&gt;59&lt;br /&gt;
| 59
&lt;/td&gt;
| 1089.23
        &lt;td&gt;1089,2308&lt;br /&gt;
| 15/8, 32/17, 62/33
&lt;/td&gt;
| vM7
    &lt;/tr&gt;
| vC#
    &lt;tr&gt;
|-
        &lt;td&gt;60&lt;br /&gt;
| 60
&lt;/td&gt;
| 1107.69
        &lt;td&gt;1107,6923&lt;br /&gt;
| 17/9, 19/10, 36/19, 55/29, 243/128, 256/135
&lt;/td&gt;
| M7
    &lt;/tr&gt;
| C#
    &lt;tr&gt;
|-
        &lt;td&gt;61&lt;br /&gt;
| 61
&lt;/td&gt;
| 1126.15
        &lt;td&gt;1126,1538&lt;br /&gt;
| 23/12, 44/23, 48/25, 90/47
&lt;/td&gt;
| ^M7
    &lt;/tr&gt;
| ^C#
    &lt;tr&gt;
|-
        &lt;td&gt;62&lt;br /&gt;
| 62
&lt;/td&gt;
| 1144.62
        &lt;td&gt;1144,6154&lt;br /&gt;
| 29/15, 31/16, 33/17, 60/31, 64/33
&lt;/td&gt;
| ^^M7
    &lt;/tr&gt;
| ^^C#
    &lt;tr&gt;
|-
        &lt;td&gt;63&lt;br /&gt;
| 63
&lt;/td&gt;
| 1163.08
        &lt;td&gt;1163,0769&lt;br /&gt;
| 45/23, 47/24, 88/45, 92/47, 108/55, 125/64
&lt;/td&gt;
| vv8
    &lt;/tr&gt;
| vvD
    &lt;tr&gt;
|-
        &lt;td&gt;64&lt;br /&gt;
| 64
&lt;/td&gt;
| 1181.54
        &lt;td&gt;1181,5385&lt;br /&gt;
| 87/55, 93/47, 95/48, 99/50, 115/58, 160/81, 184/93, 188/95, 228/115, 240/121, 248/125
&lt;/td&gt;
| v8
    &lt;/tr&gt;
| vD
&lt;/table&gt;
|-
| 65
| 1200.00
| 2/1
| P8
| D
|}
<references group="note" />


&lt;br /&gt;
== Notation ==
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Scales&lt;/h1&gt;
=== Ups and downs notation ===
&lt;a class="wiki_link" href="/photia7"&gt;photia7&lt;/a&gt;&lt;br /&gt;
65edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc.
&lt;a class="wiki_link" href="/photia12"&gt;photia12&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
{{Sharpness-sharp6a}}
 
Half-sharps and half-flats can be used to avoid triple arrows:
{{Sharpness-sharp6b}}
 
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have arrows borrowed from extended [[Helmholtz–Ellis notation]]:
{{Sharpness-sharp6}}
 
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals:
{{Sharpness-sharp6-qt}}
 
=== Ivan Wyschnegradsky's notation ===
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used:
 
{{sharpness-sharp6-iw}}
 
=== Sagittal notation ===
This notation uses the same sagittal sequence as EDOs [[72edo#Sagittal notation|72]] and [[79edo#Sagittal notation|79]].
 
==== Evo flavor ====
<imagemap>
File:65-EDO_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 655 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 220 106 [[64/63]]
rect 220 80 340 106 [[33/32]]
default [[File:65-EDO_Evo_Sagittal.svg]]
</imagemap>
 
==== Revo flavor ====
<imagemap>
File:65-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 650 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 220 106 [[64/63]]
rect 220 80 340 106 [[33/32]]
default [[File:65-EDO_Revo_Sagittal.svg]]
</imagemap>
 
==== Evo-SZ flavor ====
<imagemap>
File:65-EDO_Evo-SZ_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 639 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 220 106 [[64/63]]
rect 220 80 340 106 [[33/32]]
default [[File:65-EDO_Evo-SZ_Sagittal.svg]]
</imagemap>
 
== Approximation to JI ==
=== Zeta peak index ===
{{ZPI
| zpi = 334
| steps = 65.0158450885860
| step size = 18.4570391781413
| tempered height = 7.813349
| pure height = 7.642373
| integral = 1.269821
| gap = 16.514861
| octave = 1199.70754657919
| consistent = 6
| distinct = 6
}}
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -103 65 }}
| {{mapping| 65 103 }}
| +0.131
| 0.131
| 0.71
|-
| 2.3.5
| 32805/32768, 78732/78125
| {{mapping| 65 103 151 }}
| −0.110
| 0.358
| 1.94
|-
| 2.3.5.11
| 243/242, 4000/3993, 5632/5625
| {{mapping| 65 103 151 225 }}
| −0.266
| 0.410
| 2.22
|}
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperament
|-
| 1
| 3\65
| 55.38
| 33/32
| [[Escapade]]
|-
| 1
| 9\65
| 166.15
| 11/10
| [[Squirrel]] etc.
|-
| 1
| 12\65
| 221.54
| 25/22
| [[Hemisensi]]
|-
| 1
| 19\65
| 350.77
| 11/9
| [[Karadeniz]]
|-
| 1
| 21\65
| 387.69
| 5/4
| [[Würschmidt]]
|-
| 1
| 24\65
| 443.08
| 162/125
| [[Sensipent]]
|-
| 1
| 27\65
| 498.46
| 4/3
| [[Helmholtz (temperament)|Helmholtz]] / [[nestoria]] / [[photia]]
|-
| 1
| 28\65
| 516.92
| 27/20
| [[Larry]]
|-
| 5
| 20\65<br>(6\65)
| 369.23<br>(110.77)
| 99/80<br>(16/15)
| [[Quintosec]]
|-
| 5
| 27\65<br>(1\65)
| 498.46<br>(18.46)
| 4/3<br>(81/80)
| [[Quintile]]
|-
| 5
| 30\65<br>(4\65)
| 553.85<br>(73.85)
| 11/8<br>(25/24)
| [[Countdown]]
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Scales ==
* Amulet{{idiosyncratic}}, (approximated from [[25edo]], subset of [[würschmidt]]): 5 3 5 5 3 5 12 5 5 3 5 12 5
* [[Photia7]]
* [[Photia12]]
* [[Skateboard7]]
 
== Instruments ==
[[Lumatone mapping for 65edo]]
 
== Music ==
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/W5PXWFduPco ''microtonal improvisation in 65edo''] (2025).
 
[[Category:Listen]]
[[Category:Schismic]]
[[Category:Sensipent]]
[[Category:Subgroup temperaments]]
[[Category:Würschmidt]]