65edo: Difference between revisions
m Moving from Category:Edo to Category:Equal divisions of the octave using Cat-a-lot |
m →Music: fix formatting |
||
(60 intermediate revisions by 20 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
65et can be characterized as the temperament which [[tempering out|tempers out]] 32805/32768 ([[schisma]]), 78732/78125 ([[sensipent comma]]), 393216/390625 ([[würschmidt comma]]), and {{monzo| -13 17 -6 }} ([[graviton]]). In the [[7-limit]], there are two different maps; the first is {{val| 65 103 151 '''182''' }} (65), tempering out [[126/125]], [[245/243]] and [[686/675]], so that it [[support]]s [[sensi]], and the second is {{val| 65 103 151 '''183''' }} (65d), tempering out [[225/224]], [[3125/3087]], [[4000/3969]] and [[5120/5103]], so that it supports [[garibaldi]]. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[würschmidt]] temperament (wurschmidt and worschmidt) these two mappings provide. | |||
65edo approximates the intervals [[ | 65edo approximates the intervals [[3/2]], [[5/4]], [[11/8]], [[19/16]], [[23/16]], [[31/16]] and [[47/32]] well, so that it does a good job representing the 2.3.5.11.19.23.31.47 [[just intonation subgroup]]. To this one may want to add [[17/16]], [[29/16]] and [[43/32]], giving the [[47-limit]] no-7's no-13's no-37's no-41's subgroup 2.3.5.11.17.19.23.29.31.43.47. In this sense it is a tuning of [[schismic]]/[[nestoria]] that focuses on the very primes that [[53edo]] neglects (which instead elegantly connects primes 7, 13, 37, and 41 to nestoria). Also of interest is the [[19-limit]] [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as the [[zeta]] edo [[130edo]]. | ||
=== Prime harmonics === | |||
{{Harmonics in equal|65|intervals=prime|columns=15}} | |||
= | === Subsets and supersets === | ||
65edo contains [[5edo]] and [[13edo]] as subsets. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [[Andrew Heathwaite]]'s composition [https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded ''Rubble: a Xenuke Unfolded'']. | |||
{| class="wikitable" | [[130edo]], which doubles its, corrects its approximation to harmonics 7 and 13. | ||
== Intervals == | |||
{| class="wikitable center-all right-2 left-3" | |||
|- | |- | ||
! [[ | ! # | ||
! | ! [[Cent]]s | ||
! colspan="2" |[[Ups and | ! Approximate ratios<ref group="note">{{sg|limit=2.3.5.11.13/7.17.19.23.29.31.47 subgroup}}</ref> | ||
! colspan="2" | [[Ups and downs notation]] | |||
|- | |- | ||
| 0 | |||
| 0.00 | |||
|P1 | | 1/1 | ||
|D | | P1 | ||
| D | |||
|- | |- | ||
| 1 | |||
| 18.46 | |||
|^1 | | 81/80, 88/87, 93/92, 94/93, 95/94, 96/95, 100/99, 121/120, 115/114, 116/115, 125/124 | ||
|^D | | ^1 | ||
| ^D | |||
|- | |- | ||
| 2 | |||
| 36.92 | |||
|^^1 | | 45/44, 46/45, 47/46, 48/47, 55/54, 128/125 | ||
|^^D | | ^^1 | ||
| ^^D | |||
|- | |- | ||
| 3 | |||
| 55.38 | |||
|vvm2 | | 30/29, 31/30, 32/31, 33/32, 34/33 | ||
|vvEb | | vvm2 | ||
| vvEb | |||
|- | |- | ||
| 4 | |||
| 73.85 | |||
|vm2 | | 23/22, 24/23, 25/24, 47/45 | ||
|vEb | | vm2 | ||
| vEb | |||
|- | |- | ||
| 5 | |||
| 92.31 | |||
|m2 | | 18/17, 19/18, 20/19, 58/55, 135/128, 256/243 | ||
|Eb | | m2 | ||
| Eb | |||
|- | |- | ||
| 6 | |||
| 110.77 | |||
|A1/^m2 | | 16/15, 17/16, 33/31 | ||
|D#/^Eb | | A1/^m2 | ||
| D#/^Eb | |||
|- | |- | ||
| 7 | |||
| 129.23 | |||
|v~2 | | 14/13, 27/25, 55/51 | ||
|^^Eb | | v~2 | ||
| ^^Eb | |||
|- | |- | ||
| 8 | |||
| 147.69 | |||
|~2 | | 12/11, 25/23 | ||
|vvvE | | ~2 | ||
| vvvE | |||
|- | |- | ||
| 9 | |||
| 166.15 | |||
|^~2 | | 11/10, 32/29 | ||
|vvE | | ^~2 | ||
| vvE | |||
|- | |- | ||
| 10 | |||
| 184.62 | |||
|vM2 | | 10/9, 19/17 | ||
|vE | | vM2 | ||
| vE | |||
|- | |- | ||
| 11 | |||
| 203.08 | |||
|M2 | | 9/8, 64/57 | ||
|E | | M2 | ||
| E | |||
|- | |- | ||
| 12 | |||
| 221.54 | |||
|^M2 | | 17/15, 25/22, 33/29, 58/51 | ||
|^E | | ^M2 | ||
| ^E | |||
|- | |- | ||
| 13 | |||
| | | 240.00 | ||
|^^M2 | | 23/20, 31/27, 38/33, 54/47, 55/48 | ||
|^^E | | ^^M2 | ||
| ^^E | |||
|- | |- | ||
| 14 | |||
| 258.46 | |||
|vvm3 | | 22/19, 29/25, 36/31, 64/55 | ||
|vvF | | vvm3 | ||
| vvF | |||
|- | |- | ||
| 15 | |||
| 276.92 | |||
|vm3 | | 20/17, 27/23, 34/29, 75/64 | ||
|vF | | vm3 | ||
| vF | |||
|- | |- | ||
| 16 | |||
| 295.38 | |||
|m3 | | 19/16, 32/27 | ||
|F | | m3 | ||
| F | |||
|- | |- | ||
| 17 | |||
| 313.85 | |||
|^m3 | | 6/5, 55/46 | ||
|^F | | ^m3 | ||
| ^F | |||
|- | |- | ||
| 18 | |||
| 332.31 | |||
|v~3 | | 23/19, 40/33 | ||
|^^F | | v~3 | ||
| ^^F | |||
|- | |- | ||
| 19 | |||
| 350.77 | |||
|~3 | | 11/9, 27/22, 38/31 | ||
|^^^F | | ~3 | ||
| ^^^F | |||
|- | |- | ||
| 20 | |||
| 369.23 | |||
|^~3 | | 26/21, 47/38, 68/55 | ||
|vvF# | | ^~3 | ||
| vvF# | |||
|- | |- | ||
| 21 | |||
| 387.69 | |||
|vM3 | | 5/4, 64/51 | ||
|vF# | | vM3 | ||
| vF# | |||
|- | |- | ||
| 22 | |||
| 406.15 | |||
|M3 | | 19/15, 24/19, 29/23, 34/27, 81/64 | ||
|F# | | M3 | ||
| F# | |||
|- | |- | ||
| 23 | |||
| 424.62 | |||
|^M3 | | 23/18, 32/25 | ||
|^F# | | ^M3 | ||
| ^F# | |||
|- | |- | ||
| 24 | |||
| 443.08 | |||
|^^M3 | | 22/17, 31/24, 40/31, 128/99 | ||
|^^F# | | ^^M3 | ||
| ^^F# | |||
|- | |- | ||
| 25 | |||
| 461.54 | |||
|vv4 | | 30/23, 47/36, 72/55 | ||
|vvG | | vv4 | ||
| vvG | |||
|- | |- | ||
| 26 | |||
| | | 480.00 | ||
|v4 | | 29/22, 33/25, 62/47 | ||
|vG | | v4 | ||
| vG | |||
|- | |- | ||
| 27 | |||
| 498.46 | |||
|P4 | | 4/3 | ||
|G | | P4 | ||
| G | |||
|- | |- | ||
| 28 | |||
| 516.92 | |||
|^4 | | 23/17, 27/20, 31/23 | ||
|^G | | ^4 | ||
| ^G | |||
|- | |- | ||
| 29 | |||
| 535.38 | |||
|v~4 | | 15/11, 34/25, 64/47 | ||
|^^G | | v~4 | ||
| ^^G | |||
|- | |- | ||
| 30 | |||
| 553.85 | |||
|~4 | | 11/8, 40/29, 62/45 | ||
|^^^G | | ~4 | ||
| ^^^G | |||
|- | |- | ||
| 31 | |||
| 572.31 | |||
|^~4/vd5 | | 25/18, 32/23 | ||
|vvG#/vAb | | ^~4/vd5 | ||
| vvG#/vAb | |||
|- | |- | ||
| 32 | |||
| 590.77 | |||
|vA4/d5 | | 24/17, 31/22, 38/27, 45/32 | ||
|vG#/Ab | | vA4/d5 | ||
| vG#/Ab | |||
|- | |- | ||
| 33 | |||
| 609.23 | |||
|A4/^d5 | | 17/12, 27/19, 44/31, 64/45 | ||
|G#/^Ab | | A4/^d5 | ||
| G#/^Ab | |||
|- | |- | ||
| 34 | |||
| 627.69 | |||
|^A4/v~5 | | 36/25, 23/16 | ||
|^G#/^^Ab | | ^A4/v~5 | ||
| ^G#/^^Ab | |||
|- | |- | ||
| 35 | |||
| 646.15 | |||
|~5 | | 16/11, 29/20, 45/31 | ||
|vvvA | | ~5 | ||
| vvvA | |||
|- | |- | ||
| 36 | |||
| 664.62 | |||
|^~5 | | 22/15, 25/17, 47/32 | ||
|vvA | | ^~5 | ||
| vvA | |||
|- | |- | ||
| 37 | |||
| 683.08 | |||
|v5 | | 34/23, 40/27, 46/31 | ||
|vA | | v5 | ||
| vA | |||
|- | |- | ||
| 38 | |||
| 701.54 | |||
|P5 | | 3/2 | ||
|A | | P5 | ||
| A | |||
|- | |- | ||
| 39 | |||
| | | 720.00 | ||
|^5 | | 44/29, 50/33, 47/31 | ||
|^A | | ^5 | ||
| ^A | |||
|- | |- | ||
| 40 | |||
| 738.46 | |||
|^^5 | | 23/15, 55/36, 72/47 | ||
|^^A | | ^^5 | ||
| ^^A | |||
|- | |- | ||
| 41 | |||
| 756.92 | |||
|vvm6 | | 17/11, 48/31, 31/20, 99/64 | ||
|vvBb | | vvm6 | ||
| vvBb | |||
|- | |- | ||
| 42 | |||
| 775.38 | |||
|vm6 | | 25/16, 36/23 | ||
|vBb | | vm6 | ||
| vBb | |||
|- | |- | ||
| 43 | |||
| 793.85 | |||
|m6 | | 19/12, 27/17, 30/19, 46/29, 128/81 | ||
|Bb | | m6 | ||
| Bb | |||
|- | |- | ||
| 44 | |||
| 812.31 | |||
|^m6 | | 8/5, 51/32 | ||
|^Bb | | ^m6 | ||
| ^Bb | |||
|- | |- | ||
| 45 | |||
| 830.77 | |||
|v~6 | | 21/13, 55/34, 76/47 | ||
|^^Bb | | v~6 | ||
| ^^Bb | |||
|- | |- | ||
| 46 | |||
| 849.23 | |||
|~6 | | 18/11, 31/19, 44/27 | ||
|vvvB | | ~6 | ||
| vvvB | |||
|- | |- | ||
| 47 | |||
| 867.69 | |||
|^~6 | | 33/20, 38/23 | ||
|vvB | | ^~6 | ||
| vvB | |||
|- | |- | ||
| 48 | |||
| 886.15 | |||
|vM6 | | 5/3, 92/55 | ||
|vB | | vM6 | ||
| vB | |||
|- | |- | ||
| 49 | |||
| 904.62 | |||
|M6 | | 27/16, 32/19 | ||
|B | | M6 | ||
| B | |||
|- | |- | ||
| 50 | |||
| 923.08 | |||
|^M6 | | 17/10, 29/17, 46/27, 128/75 | ||
|^B | | ^M6 | ||
| ^B | |||
|- | |- | ||
| 51 | |||
| 941.54 | |||
|^^M6 | | 19/11, 31/18, 50/29, 55/32 | ||
|^^B | | ^^M6 | ||
| ^^B | |||
|- | |- | ||
| 52 | |||
| | | 960.00 | ||
|vvm7 | | 33/19, 40/23, 47/27, 54/31, 96/55 | ||
|vvC | | vvm7 | ||
| vvC | |||
|- | |- | ||
| 53 | |||
| 978.46 | |||
|vm7 | | 30/17, 44/25, 51/29, 58/33 | ||
|vC | | vm7 | ||
| vC | |||
|- | |- | ||
| 54 | |||
| 996.92 | |||
|m7 | | 16/9, 57/32 | ||
|C | | m7 | ||
| C | |||
|- | |- | ||
| 55 | |||
| 1015.38 | |||
|^m7 | | 9/5, 34/19 | ||
|^C | | ^m7 | ||
| ^C | |||
|- | |- | ||
| 56 | |||
| 1033.85 | |||
|v~7 | | 20/11, 29/16 | ||
|^^C | | v~7 | ||
| ^^C | |||
|- | |- | ||
| 57 | |||
| 1052.31 | |||
|~7 | | 11/6, 46/25 | ||
|^^^C | | ~7 | ||
| ^^^C | |||
|- | |- | ||
| 58 | |||
| 1070.77 | |||
|^~7 | | 13/7, 50/27, 102/55 | ||
|vvC# | | ^~7 | ||
| vvC# | |||
|- | |- | ||
| 59 | |||
| 1089.23 | |||
|vM7 | | 15/8, 32/17, 62/33 | ||
|vC# | | vM7 | ||
| vC# | |||
|- | |- | ||
| 60 | |||
| 1107.69 | |||
|M7 | | 17/9, 19/10, 36/19, 55/29, 243/128, 256/135 | ||
|C# | | M7 | ||
| C# | |||
|- | |- | ||
| 61 | |||
| 1126.15 | |||
|^M7 | | 23/12, 44/23, 48/25, 90/47 | ||
|^C# | | ^M7 | ||
| ^C# | |||
|- | |- | ||
| 62 | |||
| 1144.62 | |||
|^^M7 | | 29/15, 31/16, 33/17, 60/31, 64/33 | ||
|^^C# | | ^^M7 | ||
| ^^C# | |||
|- | |- | ||
| 63 | |||
| 1163.08 | |||
|vv8 | | 45/23, 47/24, 88/45, 92/47, 108/55, 125/64 | ||
|vvD | | vv8 | ||
| vvD | |||
|- | |- | ||
| 64 | |||
| 1181.54 | |||
|v8 | | 87/55, 93/47, 95/48, 99/50, 115/58, 160/81, 184/93, 188/95, 228/115, 240/121, 248/125 | ||
|vD | | v8 | ||
| vD | |||
|- | |- | ||
| 65 | |||
| | | 1200.00 | ||
|P8 | | 2/1 | ||
|D | | P8 | ||
| D | |||
|} | |} | ||
<references group="note" /> | |||
== Notation == | |||
=== Ups and downs notation === | |||
65edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | |||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have arrows borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp6}} | |||
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals: | |||
{{Sharpness-sharp6-qt}} | |||
=== Ivan Wyschnegradsky's notation === | |||
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used: | |||
{{sharpness-sharp6-iw}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[72edo#Sagittal notation|72]] and [[79edo#Sagittal notation|79]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:65-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 655 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:65-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:65-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 650 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:65-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:65-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 639 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:65-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
== Approximation to JI == | |||
=== Zeta peak index === | |||
{{ZPI | |||
| zpi = 334 | |||
| steps = 65.0158450885860 | |||
| step size = 18.4570391781413 | |||
| tempered height = 7.813349 | |||
| pure height = 7.642373 | |||
| integral = 1.269821 | |||
| gap = 16.514861 | |||
| octave = 1199.70754657919 | |||
| consistent = 6 | |||
| distinct = 6 | |||
}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -103 65 }} | |||
| {{mapping| 65 103 }} | |||
| +0.131 | |||
| 0.131 | |||
| 0.71 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, 78732/78125 | |||
| {{mapping| 65 103 151 }} | |||
| −0.110 | |||
| 0.358 | |||
| 1.94 | |||
|- | |||
| 2.3.5.11 | |||
| 243/242, 4000/3993, 5632/5625 | |||
| {{mapping| 65 103 151 225 }} | |||
| −0.266 | |||
| 0.410 | |||
| 2.22 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |||
| 1 | |||
| 3\65 | |||
| 55.38 | |||
| 33/32 | |||
| [[Escapade]] | |||
|- | |||
| 1 | |||
| 9\65 | |||
| 166.15 | |||
| 11/10 | |||
| [[Squirrel]] etc. | |||
|- | |||
| 1 | |||
| 12\65 | |||
| 221.54 | |||
| 25/22 | |||
| [[Hemisensi]] | |||
|- | |||
| 1 | |||
| 19\65 | |||
| 350.77 | |||
| 11/9 | |||
| [[Karadeniz]] | |||
|- | |||
| 1 | |||
| 21\65 | |||
| 387.69 | |||
| 5/4 | |||
| [[Würschmidt]] | |||
|- | |||
| 1 | |||
| 24\65 | |||
| 443.08 | |||
| 162/125 | |||
| [[Sensipent]] | |||
|- | |||
| 1 | |||
| 27\65 | |||
| 498.46 | |||
| 4/3 | |||
| [[Helmholtz (temperament)|Helmholtz]] / [[nestoria]] / [[photia]] | |||
|- | |||
| 1 | |||
| 28\65 | |||
| 516.92 | |||
| 27/20 | |||
| [[Larry]] | |||
|- | |||
| 5 | |||
| 20\65<br>(6\65) | |||
| 369.23<br>(110.77) | |||
| 99/80<br>(16/15) | |||
| [[Quintosec]] | |||
|- | |||
| 5 | |||
| 27\65<br>(1\65) | |||
| 498.46<br>(18.46) | |||
| 4/3<br>(81/80) | |||
| [[Quintile]] | |||
|- | |||
| 5 | |||
| 30\65<br>(4\65) | |||
| 553.85<br>(73.85) | |||
| 11/8<br>(25/24) | |||
| [[Countdown]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | |||
* Amulet{{idiosyncratic}}, (approximated from [[25edo]], subset of [[würschmidt]]): 5 3 5 5 3 5 12 5 5 3 5 12 5 | |||
* [[Photia7]] | |||
* [[Photia12]] | |||
* [[Skateboard7]] | |||
== Instruments == | |||
[[Lumatone mapping for 65edo]] | |||
= | == Music == | ||
[[ | ; [[Bryan Deister]] | ||
* [https://www.youtube.com/shorts/W5PXWFduPco ''microtonal improvisation in 65edo''] (2025). | |||
[[Category:Listen]] | |||
[[Category:Schismic]] | |||
[[Category:Sensipent]] | |||
[[Category:Subgroup temperaments]] | |||
[[Category:Würschmidt]] | |||
[[Category: | |||
[[Category: | |||
[[Category: | |||
[[Category: | |||
[[Category: |