253edo: Difference between revisions

Fredg999 category edits (talk | contribs)
m Removing from Category:Theory using Cat-a-lot
m + category
 
(17 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''253EDO''' is the [[EDO|equal division of the octave]] into 253 parts of 4.743083 [[cent]]s each. It's consistent to the 17-limit, approximating the fifth by '''148\253''' (0.021284 cents sharper than the just 3/2), and the prime harmonics from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic_family|sesquiquartififths]] temperament.
{{Infobox ET}}
{{ED intro}}


<u>'''253 tone equal modes:'''</u>
== Theory ==
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the [[prime harmonic]]s from 5 to 17 are all slightly flat. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the [[5-limit]]; [[2401/2400]] in the [[7-limit]]; [[385/384]], [[1375/1372]] and [[4000/3993]] in the [[11-limit]]; [[325/324]], [[1575/1573]] and [[2200/2197]] in the [[13-limit]]; [[375/374]] and [[595/594]] in the [[17-limit]]. It provides the [[optimal patent val]] for the [[tertiaschis]] temperament, and a good tuning for the [[sesquiquartififths]] temperament in the higher limits.


63 32 63 63 32: [[3L_2s|Pentatonic]]
=== Prime harmonics ===
{{Harmonics in equal|253}}


43 43 19 43 43 43 19: [[5L_2s|Pythagorean tuning]]
=== Subsets and supersets ===
Since 253 factors into 11 × 23, and has subset edos [[11edo]] and [[23edo]]. [[1012edo]] divides 253edo's step size into 4 equal parts and provides a good approximation of the 13-limit.


41 41 24 41 41 41 24: [[Meantone|Meantonic tuning]]
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 401 -253 }}
| {{mapping| 253 401 }}
| −0.007
| 0.007
| 0.14
|-
| 2.3.5
| 32805/32768, {{monzo| -4 -37 27 }}
| {{mapping| 253 401 587 }}
| +0.300
| 0.435
| 9.16
|-
| 2.3.5.7
| 2401/2400, 32805/32768, 390625/387072
| {{mapping| 253 401 587 710 }}
| +0.335
| 0.381
| 8.03
|-
| 2.3.5.7.11
| 385/384, 1375/1372, 4000/3993, 19712/19683
| {{mapping| 253 401 587 710 875 }}
| +0.333
| 0.341
| 7.19
|-
| 2.3.5.7.11.13
| 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197
| {{mapping| 253 401 587 710 875 936 }}
| +0.323
| 0.312
| 6.58
|-
| 2.3.5.7.11.13.17
| 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197
| {{mapping| 253 401 587 710 875 936 1034 }}
| +0.298
| 0.295
| 6.22
|}


35 35 35 35 35 35 35 8: [[7L_1s|Porcupine tuning]]
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 35\253
| 166.01
| 11/10
| [[Tertiaschis]]
|-
| 1
| 37\253
| 175.49
| 448/405
| [[Sesquiquartififths]]
|-
| 1
| 105\253
| 498.02
| 4/3
| [[Helmholtz (temperament)|Helmholtz]]
|-
| 1
| 123\253
| 583.40
| 7/5
| [[Cotritone]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]]
== Scales ==
* 63 32 63 63 32: One of many [[3L 2s|pentic]] scales available
* 43 43 19 43 43 43 19: [[Helmholtz (temperament)|Helmholtz]][7]
* 41 41 24 41 41 41 24: [[Meantone]][7]
* 35 35 35 35 35 35 35 8: [[Porcupine]][8]
* 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]]
* 31 31 31 18 31 31 31 31 18: [[Mavila]][9]
* 26 26 15 26 26 26 15 26 26 26 15: [[Sensi]][11]
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]]


31 31 31 18 31 31 31 31 18: [[7L_2s|Superdiatonic tuning]] in the way of Mavila
[[Category:3-limit record edos|###]] <!-- 3-digit number -->
 
[[Category:Tertiaschis]]
26 26 15 26 26 26 15 26 26 26 15: [[sensi11|Sensi tuning]]
 
20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L_3s|Ketradektriatoh tuning]]
 
'''PRIME FACTORIZATION:'''
 
253 = [[11edo|11]] * [[23edo|23]]
[[Category:Equal divisions of the octave]]
[[Category:modes]]
[[Category:nano]]
[[Category:sesquiquartififths]]
[[Category:superpythagorean]]