253edo: Difference between revisions

Wikispaces>Osmiorisbendi
**Imported revision 429134596 - Original comment: **
m + category
 
(26 intermediate revisions by 14 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2013-05-06 05:02:51 UTC</tt>.<br>
: The original revision id was <tt>429134596</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #590059; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;253 tone equal temperament&lt;/span&gt;=


**//253-EDO//** or **253-tET** divides the octave into 253 equal steps of 4.743083 Cents, each one. It approximates the fifth by **148\253**, which is 701.976285 cents, a mere **0.004487 Cents sharp**. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament.
== Theory ==
253edo is [[consistent]] to the [[17-odd-limit]], approximating the fifth by 148\253 (0.021284 cents sharper than the just 3/2), and the [[prime harmonic]]s from 5 to 17 are all slightly flat. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the [[5-limit]]; [[2401/2400]] in the [[7-limit]]; [[385/384]], [[1375/1372]] and [[4000/3993]] in the [[11-limit]]; [[325/324]], [[1575/1573]] and [[2200/2197]] in the [[13-limit]]; [[375/374]] and [[595/594]] in the [[17-limit]]. It provides the [[optimal patent val]] for the [[tertiaschis]] temperament, and a good tuning for the [[sesquiquartififths]] temperament in the higher limits.


__**253 tone equal modes:**__
=== Prime harmonics ===
63 32 63 63 32: [[3L 2s|Pentatonic]]
{{Harmonics in equal|253}}
43 43 19 43 43 43 19: [[5L 2s|Pythagorean tuning]]
 
41 41 24 41 41 41 24: [[Meantone|Meantonic tuning]]
=== Subsets and supersets ===
35 35 35 35 35 35 35 8: [[7L 1s|Porcupine tuning]]
Since 253 factors into 11 × 23, and has subset edos [[11edo]] and [[23edo]]. [[1012edo]] divides 253edo's step size into 4 equal parts and provides a good approximation of the 13-limit.
33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]]
 
31 31 31 18 31 31 31 31 18: [[7L 2s|Superdiatonic tuning]] in the way of Mavila
== Regular temperament properties ==
26 26 15 26 26 26 15 26 26 26 15: [[sensi11|Sensi tuning]]
{| class="wikitable center-4 center-5 center-6"
20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh tuning]]
|-
**PRIME FACTORIZATION:**
! rowspan="2" | [[Subgroup]]
253 = [[11edo|11]] * [[23edo|23]]</pre></div>
! rowspan="2" | [[Comma list]]
<h4>Original HTML content:</h4>
! rowspan="2" | [[Mapping]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;253edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x253 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #590059; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;253 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
! rowspan="2" | Optimal<br />8ve stretch (¢)
&lt;br /&gt;
! colspan="2" | Tuning error
&lt;strong&gt;&lt;em&gt;253-EDO&lt;/em&gt;&lt;/strong&gt; or &lt;strong&gt;253-tET&lt;/strong&gt; divides the octave into 253 equal steps of 4.743083 Cents, each one. It approximates the fifth by &lt;strong&gt;148\253&lt;/strong&gt;, which is 701.976285 cents, a mere &lt;strong&gt;0.004487 Cents sharp&lt;/strong&gt;. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit &lt;a class="wiki_link" href="/Schismatic%20family"&gt;sesquiquartififths&lt;/a&gt; temperament.&lt;br /&gt;
|-
&lt;br /&gt;
! [[TE error|Absolute]] (¢)
&lt;u&gt;&lt;strong&gt;253 tone equal modes:&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
! [[TE simple badness|Relative]] (%)
63 32 63 63 32: &lt;a class="wiki_link" href="/3L%202s"&gt;Pentatonic&lt;/a&gt;&lt;br /&gt;
|-
43 43 19 43 43 43 19: &lt;a class="wiki_link" href="/5L%202s"&gt;Pythagorean tuning&lt;/a&gt;&lt;br /&gt;
| 2.3
41 41 24 41 41 41 24: &lt;a class="wiki_link" href="/Meantone"&gt;Meantonic tuning&lt;/a&gt;&lt;br /&gt;
| {{monzo| 401 -253 }}
35 35 35 35 35 35 35 8: &lt;a class="wiki_link" href="/7L%201s"&gt;Porcupine tuning&lt;/a&gt;&lt;br /&gt;
| {{mapping| 253 401 }}
33 33 33 11 33 33 33 33 11: &lt;a class="wiki_link" href="/23edo"&gt;&amp;quot;The Hendecapliqued superdiatonic of the Icositriphony&amp;quot;&lt;/a&gt;&lt;br /&gt;
| −0.007
31 31 31 18 31 31 31 31 18: &lt;a class="wiki_link" href="/7L%202s"&gt;Superdiatonic tuning&lt;/a&gt; in the way of Mavila&lt;br /&gt;
| 0.007
26 26 15 26 26 26 15 26 26 26 15: &lt;a class="wiki_link" href="/sensi11"&gt;Sensi tuning&lt;/a&gt;&lt;br /&gt;
| 0.14
20 20 20 11 20 20 20 20 11 20 20 20 20 11: &lt;a class="wiki_link" href="/11L%203s"&gt;Ketradektriatoh tuning&lt;/a&gt;&lt;br /&gt;
|-
&lt;strong&gt;PRIME FACTORIZATION:&lt;/strong&gt;&lt;br /&gt;
| 2.3.5
253 = &lt;a class="wiki_link" href="/11edo"&gt;11&lt;/a&gt; * &lt;a class="wiki_link" href="/23edo"&gt;23&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
| 32805/32768, {{monzo| -4 -37 27 }}
| {{mapping| 253 401 587 }}
| +0.300
| 0.435
| 9.16
|-
| 2.3.5.7
| 2401/2400, 32805/32768, 390625/387072
| {{mapping| 253 401 587 710 }}
| +0.335
| 0.381
| 8.03
|-
| 2.3.5.7.11
| 385/384, 1375/1372, 4000/3993, 19712/19683
| {{mapping| 253 401 587 710 875 }}
| +0.333
| 0.341
| 7.19
|-
| 2.3.5.7.11.13
| 325/324, 385/384, 1375/1372, 1575/1573, 2200/2197
| {{mapping| 253 401 587 710 875 936 }}
| +0.323
| 0.312
| 6.58
|-
| 2.3.5.7.11.13.17
| 325/324, 375/374, 385/384, 595/594, 1275/1274, 2200/2197
| {{mapping| 253 401 587 710 875 936 1034 }}
| +0.298
| 0.295
| 6.22
|}
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 35\253
| 166.01
| 11/10
| [[Tertiaschis]]
|-
| 1
| 37\253
| 175.49
| 448/405
| [[Sesquiquartififths]]
|-
| 1
| 105\253
| 498.02
| 4/3
| [[Helmholtz (temperament)|Helmholtz]]
|-
| 1
| 123\253
| 583.40
| 7/5
| [[Cotritone]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Scales ==
* 63 32 63 63 32: One of many [[3L 2s|pentic]] scales available
* 43 43 19 43 43 43 19: [[Helmholtz (temperament)|Helmholtz]][7]
* 41 41 24 41 41 41 24: [[Meantone]][7]
* 35 35 35 35 35 35 35 8: [[Porcupine]][8]
* 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]]
* 31 31 31 18 31 31 31 31 18: [[Mavila]][9]
* 26 26 15 26 26 26 15 26 26 26 15: [[Sensi]][11]
* 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh scale]]
 
[[Category:3-limit record edos|###]] <!-- 3-digit number -->
[[Category:Tertiaschis]]