Compton family: Difference between revisions

m Clarify that "aristoxenean" only applies to the 5-limit version
m Gamelstearn: Add link to Stearnsma
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
The '''compton family''', otherwise known as the '''aristoxenean family''', tempers out the [[Pythagorean comma]], 531441/524288 = {{monzo| -19 12 }}, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12edo, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
{{Technical data page}}
The '''compton family''', otherwise known as the '''aristoxenean family''', of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[Pythagorean comma]] ([[ratio]]: 531441/524288, {{monzo|legend=1| -19 12 }}, and hence the fifths form a closed 12-note [[circle of fifths]], identical to [[12edo]]. While the tuning of the fifth will be that of 12edo, two [[cent]]s flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.


== Compton ==
== Compton ==
5-limit compton is also known as ''aristoxenean''. It tempers out the Pythagorean comma and has a period of 1\12, so it is the 12edo circle of fifths with an independent dimension for the harmonic 5. Equivalent generators are 5/4, 6/5, 10/9, 16/15 (the secor), 45/32, 135/128 and most importantly, 81/80. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings.  
{{Main| Compton }}
 
5-limit compton is also known as ''aristoxenean''. It tempers out the Pythagorean comma and has a period of 1\12, so it is the 12edo circle of fifths with an independent dimension for the harmonic 5. Equivalent generators are [[5/4]], [[6/5]], [[10/9]], [[16/15]] (the [[secor]]), [[45/32]], [[135/128]] and most importantly, [[81/80]]. In terms of [[equal temperament]]s, it is the {{nowrap| 12 & 72 }} temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings.  


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 8: Line 11:
[[Comma list]]: 531441/524288
[[Comma list]]: 531441/524288


[[Mapping]]: [{{val| 12 19 0 }}, {{val| 0 0 1 }}
{{Mapping|legend=1| 12 19 0 | 0 0 1 }}


Mapping generators: ~256/243, ~5
: mapping generators: ~256/243, ~5


[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 384.884 (~81/80 = 15.116)
[[Optimal tuning]]s:
* [[CTE]]: ~256/243 = 100.000, ~5/4 = 386.314 (~81/80 = 13.686)
: [[error map]]: {{val| 0.000 -1.955 0.000 }}
* [[POTE]]: ~256/243 = 100.000, ~5/4 = 384.884 (~81/80 = 15.116)
: error map: {{val| 0.000 -1.955 -1.431 }}


{{Optimal ET sequence|legend=1| 12, 48, 60, 72, 84, 156, 240, 396b, 636bbc }}
{{Optimal ET sequence|legend=1| 12, 48, 60, 72, 84, 156, 240, 396b, 636bbc }}


[[Badness]]: 0.094494
[[Badness]] (Smith): 0.094494


== Septimal compton ==
== Septimal compton ==
Septimal compton is also known as ''waage''. In terms of the normal list, compton adds 413343/409600 = {{monzo| -14 10 -2 1 }} to the Pythagorean comma; however, it can also be characterized by saying it adds [[225/224]].  
{{Main| Compton }}
 
Septimal compton is also known as ''waage''. In terms of the normal list, compton adds 413343/409600 ({{monzo| -14 10 -2 1 }}) to the Pythagorean comma; however, it can also be characterized by saying it adds [[225/224]].  


In either the 5- or 7-limit, 240edo is an excellent tuning, with 81/80 coming in at 15 cents exactly. In the 12edo, the major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.
In either the 5- or 7-limit, 240edo is an excellent tuning, with 81/80 coming in at 15 cents exactly. In the 12edo, the major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.


In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds [[441/440]]. For this 72edo can be recommended as a tuning.
In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds [[441/440]]. For this 72edo can be recommended as a tuning. In 11-limit compton, intervals of 5 are off by one generator, intervals of 7 are off by two generators, and intervals of 11 are off by 3 generators.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 29: Line 38:
[[Comma list]]: 225/224, 250047/250000
[[Comma list]]: 225/224, 250047/250000


[[Mapping]]: [{{val| 12 19 0 -22 }}, {{val| 0 0 1 2 }}]
{{Mapping|legend=1| 12 19 0 -22 | 0 0 1 2 }}


[[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 383.7752 (~126/125 = 16.2248)
[[Optimal tuning]]s:
* [[CTE]]: ~200/189 = 100.000, ~5/4 = 384.922 (~126/125 = 15.078)
: [[error map]]: {{val| 0.000 -1.955 -1.392 -1.017 }}
* [[POTE]]: ~200/189 = 100.000, ~5/4 = 383.775 (~126/125 = 16.225)
: error map: {{val| 0.000 -1.955 -2.538 -1.275 }}


{{Optimal ET sequence|legend=1| 12, 48d, 60, 72, 228, 300c, 372bc, 444bc }}
{{Optimal ET sequence|legend=1| 12, 48d, 60, 72, 228, 300c, 372bc, 444bc }}


[[Badness]]: 0.035686
[[Badness]] (Smith): 0.035686


=== 11-limit ===
=== 11-limit ===
Line 42: Line 55:
Comma list: 225/224, 441/440, 4375/4356
Comma list: 225/224, 441/440, 4375/4356


Mapping: [{{val|12 19 0 -22 -42 }}, {{val| 0 0 1 2 3 }}]
Mapping: {{mapping| 12 19 0 -22 -42 | 0 0 1 2 3 }}


Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.2660 (~100/99 = 16.7340)
Optimal tunings:
* CTE: ~35/33 = 100.000, ~5/4 = 384.324 (~100/99 = 15.676)
* POTE: ~35/33 = 100.000, ~5/4 = 383.266 (~100/99 = 16.734)


{{Optimal ET sequence|legend=1| 12, 48dee, 60e, 72 }}
{{Optimal ET sequence|legend=0| 12, 48dee, 60e, 72 }}


Badness: 0.022235
Badness (Smith): 0.022235


==== 13-limit ====
==== 13-limit ====
Line 55: Line 70:
Comma list: 225/224, 351/350, 364/363, 441/440
Comma list: 225/224, 351/350, 364/363, 441/440


Mapping: [{{val| 12 19 0 -22 -42 -67 }}, {{val| 0 0 1 2 3 4 }}]
Mapping: {{mapping| 12 19 0 -22 -42 -67 | 0 0 1 2 3 4 }}


Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.9628 (~105/104 = 16.0372)
Optimal tunings:
* CTE: ~35/33 = 100.000, ~5/4 = 384.685 (~105/104 = 15.315)
* POTE: ~35/33 = 100.000, ~5/4 = 383.963 (~105/104 = 16.037)


{{Optimal ET sequence|legend=1| 12f, 48defff, 60eff, 72, 228f }}
{{Optimal ET sequence|legend=0| 12f, 48deefff, 60eff, 72, 228f }}


Badness: 0.021852
Badness (Smith): 0.021852


===== 17-limit =====
===== 17-limit =====
Line 68: Line 85:
Comma list: 221/220, 225/224, 289/288, 351/350, 441/440
Comma list: 221/220, 225/224, 289/288, 351/350, 441/440


Mapping: [{{val| 12 19 0 -22 -42 -67 49 }}, {{val| 0 0 1 2 3 4 0 }}]
Mapping: {{mapping| 12 19 0 -22 -42 -67 49 | 0 0 1 2 3 4 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 383.7500 (~105/104 = 16.2500)
Optimal tunings:
* CTE: ~18/17 = 100.000, ~5/4 = 384.685 (~105/104 = 15.315)
* POTE: ~18/17 = 100.000, ~5/4 = 383.750 (~105/104 = 16.250)


{{Optimal ET sequence|legend=1| 12f, 60eff, 72 }}
{{Optimal ET sequence|legend=0| 12f, 60eff, 72 }}


Badness: 0.017131
Badness (Smith): 0.017131


==== Comptone ====
==== Comptone ====
Line 81: Line 100:
Comma list: 225/224, 325/324, 441/440, 1001/1000
Comma list: 225/224, 325/324, 441/440, 1001/1000


Mapping: [{{val| 12 19 0 -22 -42 100 }}, {{val| 0 0 1 2 3 -2 }}]
Mapping: {{mapping| 12 19 0 -22 -42 100 | 0 0 1 2 3 -2 }}


Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 382.6116 (~100/99 = 17.3884)
Optimal tunings:
* CTE: ~35/33 = 100.000, ~5/4 = 383.552 (~100/99 = 16.448)
* POTE: ~35/33 = 100.000, ~5/4 = 382.612 (~100/99 = 17.388)


{{Optimal ET sequence|legend=1| 12, 60e, 72, 204cdef, 276cdeff }}
{{Optimal ET sequence|legend=0| 12, 60e, 72, 204cdef, 276cdeff }}


Badness: 0.025144
Badness (Smith): 0.025144


===== 17-limit =====
===== 17-limit =====
Line 94: Line 115:
Comma list: 225/224, 273/272, 289/288, 325/324, 441/440
Comma list: 225/224, 273/272, 289/288, 325/324, 441/440


Mapping: [{{val| 12 19 0 -22 -42 100 49 }}, {{val| 0 0 1 2 3 -2 0 }}]
Mapping: {{mapping| 12 19 0 -22 -42 100 49 | 0 0 1 2 3 -2 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 382.5968 (~100/99 = 17.4032)
Optimal tunings:
* CTE: ~18/17 = 100.000, ~5/4 = 383.552 (~100/99 = 16.448)
* POTE: ~18/17 = 100.000, ~5/4 = 382.597 (~100/99 = 17.403)


{{Optimal ET sequence|legend=1| 12, 60e, 72, 204cdefg, 276cdeffgg }}
{{Optimal ET sequence|legend=0| 12, 60e, 72, 204cdefg, 276cdeffgg }}


Badness: 0.016361
Badness (Smith): 0.016361


== Catler ==
== Catler ==
In terms of the normal comma list, catler is characterized by the addition of the [[schisma]], 32805/32768, to the Pythagorean comma, though it can also be characterized as adding [[81/80]], [[128/125]] or [[648/625]]. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12 & 24 temperament. [[36edo]] or [[48edo]] are possible tunings. Possible generators are 36/35, 21/20, 15/14, 8/7, 7/6, 9/7, 7/5, and most importantly, 64/63.   
In terms of the normal comma list, catler is characterized by the addition of the [[schisma]], 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, [[128/125]] or [[648/625]]. In any event, the 5-limit is exactly the same as the 5-limit of 12edo. Catler can also be characterized as the {{nowrap| 12 & 24 }} temperament. [[36edo]] or [[48edo]] are possible tunings. Possible generators are [[36/35]], [[21/20]], [[15/14]], [[8/7]], [[7/6]], [[9/7]], [[7/5]], and most importantly, [[64/63]].   


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 109: Line 132:
[[Comma list]]: 81/80, 128/125
[[Comma list]]: 81/80, 128/125


[[Mapping]]: [{{val| 12 19 28 0 }}, {{val| 0 0 0 1 }}]
{{Mapping|legend=1| 12 19 28 0 | 0 0 0 1 }}


Mapping generators: ~16/15, ~7
: mapping generators: ~16/15, ~7


[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~7/4 = 973.210 (~64/63 = 26.790)
[[Optimal tuning]]s:
* [[CTE]]: ~16/15 = 100.000, ~7/4 = 968.826 (~64/63 = 31.174)
: [[error map]]: {{val| 0.000 -1.955 +13.686 0.000 }}
* [[POTE]]: ~16/15 = 100.000, ~7/4 = 973.210 (~64/63 = 26.790)
: error map: {{val| 0.000 -1.955 +13.686 +4.384 }}


{{Optimal ET sequence|legend=1| 12, 24, 36, 48c }}
{{Optimal ET sequence|legend=1| 12, 24, 36, 48c, 84c }}


[[Badness]]: 0.050297
[[Badness]] (Smith): 0.050297


=== 11-limit ===
=== 11-limit ===
Line 124: Line 151:
Comma list: 81/80, 99/98, 128/125
Comma list: 81/80, 99/98, 128/125


Mapping: [{{val| 12 19 28 0 -26 }}, {{val| 0 0 0 1 2 }}]
Mapping: {{mapping| 12 19 28 0 -26 | 0 0 0 1 2 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 977.277 (~64/63 = 22.723)
Optimal tunings:
* CTE: ~16/15 = 100.000, ~7/4 = 973.779 (~64/63 = 26.221)
* POTE: ~16/15 = 100.000, ~7/4 = 977.277 (~64/63 = 22.723)


{{Optimal ET sequence|legend=1| 12, 36e, 48c, 108ccd }}
{{Optimal ET sequence|legend=0| 12, 36e, 48c }}


Badness: 0.058213
Badness (Smith): 0.058213


=== Catlat ===
=== Catlat ===
Line 137: Line 166:
Comma list: 81/80, 128/125, 540/539
Comma list: 81/80, 128/125, 540/539


Mapping: [{{val| 12 19 28 0 109 }}, {{val| 0 0 0 1 -2 }}]
Mapping: {{mapping| 12 19 28 0 109 | 0 0 0 1 -2 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 972.136 (~64/63 = 27.864)
Optimal tunings:
* CTE: ~16/15 = 100.000, ~7/4 = 972.823 (~64/63 = 27.177)
* POTE: ~16/15 = 100.000, ~7/4 = 972.136 (~64/63 = 27.864)


{{Optimal ET sequence|legend=1| 36, 48c, 84c }}
{{Optimal ET sequence|legend=0| 12e, 36, 48c, 84c }}


Badness: 0.081909
Badness (Smith): 0.081909


=== Catcall ===
=== Catnip ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 56/55, 81/80, 128/125
Comma list: 56/55, 81/80, 128/125


Mapping: [{{val| 12 19 28 0 8 }}, {{val| 0 0 0 1 1 }}]
Mapping: {{mapping| 12 19 28 0 8 | 0 0 0 1 1 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 967.224 (~64/63 = 32.776)
Optimal tunings:
* CTE: ~16/15 = 100.000, ~7/4 = 961.874 (~64/63 = 38.126)
* POTE: ~16/15 = 100.000, ~7/4 = 967.224 (~64/63 = 32.776)


{{Optimal ET sequence|legend=1| 12, 24, 36, 72ce }}
{{Optimal ET sequence|legend=0| 12, 24, 36, 72ce }}


Badness: 0.034478
Badness (Smith): 0.034478


==== 13-limit ====
==== 13-limit ====
Line 163: Line 196:
Comma list: 56/55, 66/65, 81/80, 105/104
Comma list: 56/55, 66/65, 81/80, 105/104


Mapping: [{{val| 12 19 28 0 8 11 }}, {{val| 0 0 0 1 1 1 }}]
Mapping: {{mapping| 12 19 28 0 8 11 | 0 0 0 1 1 1 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.778 (~40/39 = 37.232)
Optimal tunings:
* CTE: ~16/15 = 100.000, ~7/4 = 956.375 (~40/39 = 43.625)
* POTE: ~16/15 = 100.000, ~7/4 = 962.778 (~40/39 = 37.232)


{{Optimal ET sequence|legend=1| 12f, 24, 36f, 60cf }}
{{Optimal ET sequence|legend=0| 12f, 24, 36f }}


Badness: 0.028363
Badness (Smith): 0.028363


===== 17-limit =====
===== 17-limit =====
Line 176: Line 211:
Comma list: 51/50, 56/55, 66/65, 81/80, 105/104
Comma list: 51/50, 56/55, 66/65, 81/80, 105/104


Mapping: [{{val| 12 19 28 0 8 11 49 }}, {{val| 0 0 0 1 1 1 0 }}]
Mapping: {{mapping| 12 19 28 0 8 11 49 | 0 0 0 1 1 1 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 960.223 (~40/39 = 39.777)
Optimal tunings:
* CTE: ~18/17 = 100.000, ~7/4 = 956.375 (~40/39 = 43.625)
* POTE: ~18/17 = 100.000, ~7/4 = 960.223 (~40/39 = 39.777)


{{Optimal ET sequence|legend=1| 12f, 24, 36f, 60cf }}
{{Optimal ET sequence|legend=0| 12f, 24, 36f }}


Badness: 0.023246
Badness (Smith): 0.023246


===== 19-limit =====
===== 19-limit =====
Line 189: Line 226:
Comma list: 51/50, 56/55, 66/65, 76/75, 81/80, 96/95
Comma list: 51/50, 56/55, 66/65, 76/75, 81/80, 96/95


Mapping: [{{val| 12 19 28 0 8 11 49 51 }}, {{val| 0 0 0 1 1 1 0 0 }}]
Mapping: {{mapping| 12 19 28 0 8 11 49 51 | 0 0 0 1 1 1 0 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 959.835 (~40/39 = 40.165)
Optimal tunings:
* CTE: ~18/17 = 100.000, ~7/4 = 956.375 (~40/39 = 43.625)
* POTE: ~18/17 = 100.000, ~7/4 = 959.835 (~40/39 = 40.165)


{{Optimal ET sequence|legend=1| 12f, 24, 36f, 60cf }}
{{Optimal ET sequence|legend=0| 12f, 24, 36f }}


Badness: 0.018985
Badness (Smith): 0.018985


==== Duodecic ====
==== Duodecic ====
Line 202: Line 241:
Comma list: 56/55, 81/80, 91/90, 128/125
Comma list: 56/55, 81/80, 91/90, 128/125


Mapping: [{{val| 12 19 28 0 8 78 }}, {{val| 0 0 0 1 1 -1 }}]
Mapping: {{mapping| 12 19 28 0 8 78 | 0 0 0 1 1 -1 }}


Optimal tuning (POTE): ~16/15 = 1\12, ~7/4 = 962.312 (~64/63 = 37.688)
Optimal tunings:
* CTE: ~16/15 = 100.000, ~7/4 = 961.255 (~64/63 = 38.745)
* POTE: ~16/15 = 100.000, ~7/4 = 962.312 (~64/63 = 37.688)


{{Optimal ET sequence|legend=1| 12, 24, 36, 60c }}
{{Optimal ET sequence|legend=0| 12, 24, 36 }}


Badness: 0.038307
Badness (Smith): 0.038307


===== 17-limit =====
===== 17-limit =====
Line 215: Line 256:
Comma list: 51/50, 56/55, 81/80, 91/90, 128/125
Comma list: 51/50, 56/55, 81/80, 91/90, 128/125


Mapping: [{{val| 12 19 28 0 8 78 49 }}, {{val| 0 0 0 1 1 -1 0 }}]
Mapping:{{mapping| 12 19 28 0 8 78 49 | 0 0 0 1 1 -1 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.903 (~64/63 = 38.097)
Optimal tunings:
* CTE: ~18/17 = 100.000, ~7/4 = 961.255 (~64/63 = 38.745)
* POTE: ~18/17 = 100.000, ~7/4 = 961.903 (~64/63 = 38.097)


{{Optimal ET sequence|legend=1| 12, 24, 36, 60c }}
{{Optimal ET sequence|legend=0| 12, 24, 36, 60c }}


Badness: 0.027487
Badness (Smith): 0.027487


===== 19-limit =====
===== 19-limit =====
Line 228: Line 271:
Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95
Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95


Mapping: [{{val| 12 19 28 0 8 78 49 51 }}, {{val| 0 0 0 1 1 -1 0 0 }}]
Mapping: {{mapping| 12 19 28 0 8 78 49 51 | 0 0 0 1 1 -1 0 0 }}


Optimal tuning (POTE): ~18/17 = 1\12, ~7/4 = 961.920 (~64/63 = 38.080)
Optimal tunings:
* CTE: ~18/17 = 100.000, ~7/4 = 961.255 (~64/63 = 38.745)
* POTE: ~18/17 = 100.000, ~7/4 = 961.920 (~64/63 = 38.080)


{{Optimal ET sequence|legend=1| 12, 24, 36, 60c }}
{{Optimal ET sequence|legend=0| 12, 24, 36, 60c }}


Badness: 0.020939
Badness (Smith): 0.020939


== Duodecim ==
== Duodecim ==
{{See also| Jubilismic clan #Duodecim }}
[[Subgroup]]: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 36/35, 50/49, 64/63
[[Comma list]]: 36/35, 50/49, 64/63


[[Mapping]]: [{{val| 12 19 28 34 0 }}, {{val| 0 0 0 0 1 }}]
{{Mapping|legend=1| 12 19 28 34 0 | 0 0 0 0 1 }}


Mapping generators: ~16/15, ~11
: mapping genereators: ~16/15, ~11


[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023 (~55/54 = 34.977)
[[Optimal tuning]]s:
* [[CTE]]: ~16/15 = 1\12, ~11/8 = 551.318 (~33/32 = 48.682)
: [[error map]]: {{val| 0.000 -1.955 +13.686 +31.174 0.000 }}
* [[POTE]]: ~16/15 = 1\12, ~11/8 = 565.023 (~55/54 = 34.977)
: error map: {{val| 0.000 -1.955 +13.686 +31.174 +13.705 }}


{{Optimal ET sequence|legend=1| 12, 24d }}
{{Optimal ET sequence|legend=1| 12, 24d, 36d }}


[[Badness]]: 0.030536
[[Badness]] (Smith): 0.030536


== Hours ==
== Hours ==
The hours temperament has a period of 1/24 octave and tempers out the [[cataharry comma]] (19683/19600) and the mirwomo comma (33075/32768). The name "hours" was so named for the following reasons – the period is 1/24 octave, and there are 24 hours per a day.
The hours temperament has a period of 1/24 octave and tempers out the [[cataharry comma]] (19683/19600) and the mirwomo comma (33075/32768). The name ''hours'' was named for the reason that the period is 1/24 octave and there are 24 hours per day.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 260: Line 307:
[[Comma list]]: 19683/19600, 33075/32768
[[Comma list]]: 19683/19600, 33075/32768


[[Mapping]]: [{{val| 24 38 0 123 }}, {{val| 0 0 1 -1 }}]
{{Mapping|legend=1| 24 38 0 123 | 0 0 1 -1 }}
 
{{Multival|legend=1| 0 24 -24 38 -38 -123 }}


Mapping generators: ~36/35, ~5
: mapping generators: ~36/35, ~5


[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\24, ~5/4 = 384.033  
[[Optimal tuning]]s:
* [[CTE]]: ~36/35 = 50.000, ~5/4 = 384.226 (~81/80 = 15.774)
: [[error map]]: {{val| 0.000 -1.955 -2.088 -3.052 }}
* [[POTE]]: ~36/35 = 50.000, ~5/4 = 384.033 (~81/80 = 15.967)
: error map: {{val| 0.000 -1.955 -2.280 -2.859 }}


{{Optimal ET sequence|legend=1| 24, 48, 72, 312bd, 384bcdd, 456bcdd, 528bcdd, 600bccdd }}
{{Optimal ET sequence|legend=1| 24, 48, 72, 312bd, 384bcdd, 456bcdd, 528bcdd, 600bccdd }}


[[Badness]]: 0.116091
[[Badness]] (Smith): 0.116091


=== 11-limit ===
=== 11-limit ===
Line 277: Line 326:
Comma list: 243/242, 385/384, 9801/9800
Comma list: 243/242, 385/384, 9801/9800


Mapping: [{{val| 24 38 0 123 83 }}, {{val| 0 0 1 -1 0 }}]
Mapping: {{mapping| 24 38 0 123 83 | 0 0 1 -1 0 }}


Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.054
Optimal tunings:
* CTE: ~36/35 = 50.000, ~5/4 = 384.226 (~121/120 = 15.774)
* POTE: ~36/35 = 50.000, ~5/4 = 384.054 (~121/120 = 15.946)


{{Optimal ET sequence|legend=1| 24, 48, 72, 312bd, 384bcdd, 456bcdde, 528bcdde }}
{{Optimal ET sequence|legend=1| 24, 48, 72, 312bd, 384bcdd, 456bcdde, 528bcdde }}


Badness: 0.036248
Badness (Smith): 0.036248


=== 13-limit ===
=== 13-limit ===
Line 290: Line 341:
Comma list: 243/242, 351/350, 364/363, 385/384
Comma list: 243/242, 351/350, 364/363, 385/384


Mapping: [{{val| 24 38 0 123 83 33 }}, {{val| 0 0 1 -1 0 1 }}]
Mapping: {{mapping| 24 38 0 123 83 33 | 0 0 1 -1 0 1 }}


Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.652
Optimal tunings:
* CTE: ~36/35 = 50.000, ~5/4 = 385.420 (~121/120 = 14.580)
* POTE: ~36/35 = 50.000, ~5/4 = 384.652 (~121/120 = 15.348)


{{Optimal ET sequence|legend=1| 24, 48f, 72, 168df, 240dff }}
{{Optimal ET sequence|legend=1| 24, 48f, 72, 168df, 240dff }}


Badness: 0.026931
Badness (Smith): 0.026931


== Decades ==
== Gamelstearn ==
The decades temperament has a period of 1/36 octave and tempers out the [[gamelisma]] (1029/1024) and the stearnsma (118098/117649). The name "decades" was so named for the following reasons – the period is 1/36 octave, and there are 36 decades (''ten days'') per a year (12 months × 3 decades per a month).  
The gamelstearn temperament has a period of 1/36 octave and tempers out the [[gamelisma]] (1029/1024) and the [[stearnsma]] (118098/117649).  
 
It used to be named "decades".


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 305: Line 360:
[[Comma list]]: 1029/1024, 118098/117649
[[Comma list]]: 1029/1024, 118098/117649


[[Mapping]]: [{{val| 36 57 0 101 }}, {{val| 0 0 1 0 }}]
{{Mapping|legend=1| 36 57 0 101 | 0 0 1 0 }}
 
Mapping generators: ~49/48, ~5


{{Multival|legend=1| 0 36 0 57 0 -101 }}
: mapping generators: ~49/48, ~5


[[Optimal tuning]] ([[POTE]]): ~49/48 = 1\36, ~5/4 = 384.764
[[Optimal tuning]]s:
* [[CTE]]: ~49/48 = 33.333, ~5/4 = 386.314 (~81/80 = 13.686)
: [[error map]]: {{val| 0.000 -1.955 0.000 -2.159 }}
* [[POTE]]: ~49/48 = 33.333, ~5/4 = 384.764 (~81/80 = 15.236)
: error map: {{val| 0.000 -1.955 -1.549 -2.159 }}


{{Optimal ET sequence|legend=1| 36, 72, 252, 324bd, 396bd }}
{{Optimal ET sequence|legend=1| 36, 72, 252, 324bd, 396bd }}


[[Badness]]: 0.108016
[[Badness]] (Smith): 0.108016


=== 11-limit ===
=== 11-limit ===
Line 322: Line 379:
Comma list: 540/539, 1029/1024, 4000/3993
Comma list: 540/539, 1029/1024, 4000/3993


Mapping: [{{val| 36 57 0 101 41 }}, {{val| 0 0 1 0 1 }}]
Mapping: {{mapping| 36 57 0 101 41 | 0 0 1 0 1 }}


Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.150
Optimal tunings:
* CTE: ~49/48 = 33.333, ~5/4 = 385.797 (~81/80 = 14.203)
* POTE: ~49/48 = 33.333, ~5/4 = 385.150 (~81/80 = 14.850)


{{Optimal ET sequence|legend=1| 36, 72, 396bd, 468bcd, 540bcd, 612bccdd, 684bbccdd, 756bbccdd }}
{{Optimal ET sequence|legend=1| 36, 72, 396bd, 468bcd, 540bcd, 612bccdd, 684bbccdd, 756bbccdd }}


Badness: 0.043088
Badness (Smith): 0.043088


== Omicronbeta ==
== Omicronbeta ==
[[Subgroup]]: 2.3.5.7.11.13
[[Subgroup]]: 2.3.5.7.11.13


[[Comma list]]: 225/224, 243/242, 441/440, 4375/4356
[[Comma list]]: 225/224, 243/242, 385/384, 4000/3993


[[Mapping]]: [{{val| 72 114 167 202 249 266 }}, {{val| 0 0 0 0 0 1 }}]
{{Mapping|legend=1| 72 114 167 202 249 0 | 0 0 0 0 0 1 }}


Mapping generators: ~100/99, ~13
: mapping generators: ~100/99, ~13


[[Optimal tuning]] ([[POTE]]): ~100/99 = 1\72, ~13/8 = 837.814
[[Optimal tuning]]s:
* [[CTE]]: ~100/99 = 16.667, ~13/8 = 840.528 (~325/324 = 7.194)
: [[error map]]: {{val| 0.000 -1.955 -2.980 -2.159 -1.318 0.000 }}
* [[POTE]]: ~100/99 = 16.667, ~13/8 = 837.814 (~364/363 = 4.481)
: error map: {{val| 0.000 -1.955 -2.980 -2.159 -1.318 -2.713 }}


{{Optimal ET sequence|legend=1| 72, 144, 216c, 288cdf, 504bcdef }}
{{Optimal ET sequence|legend=1| 72, 144, 216c, 288cdf }}


[[Badness]]: 0.029956
[[Badness]] (Smith): 0.029956


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Compton family| ]] <!-- main article -->
[[Category:Compton family| ]] <!-- main article -->
[[Category:Compton| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Compton]]