56ed5: Difference between revisions
Created page with "'''Division of the 5th harmonic into 56 equal parts''' (56ed5) is related to 24 edo, but with the 5/1 rather than the 2/1 being just. The octave is about 5.8..." Tags: Mobile edit Mobile web edit |
ArrowHead294 (talk | contribs) |
||
(10 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
{| class="wikitable" | == Theory == | ||
56ed5 is related to 24edo, but with the 5th harmonic rather than the [[2/1|octave]] being just. The octave is compressed by about 5.8{{c}}, a small but significant deviation. This tuning has a [[meantone]] fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning is also a [[hyperpyth]], tempering out 135/133, 171/169, 225/221, and 1521/1445 in the patent val. | |||
=== Harmonics === | |||
{{Harmonics in equal|56|5|1|intervals=integer|columns=11}} | |||
{{Harmonics in equal|56|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 56ed5 (continued)}} | |||
=== Subsets and supersets === | |||
Since 56 factors into primes as {{nowrap| 2<sup>3</sup> × 7 }}, 56ed5 contains subset ed5's {{EDs|equave=5| 2, 4, 7, 8, 14, and 28 }}. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximated ratios | ||
|- | |- | ||
| 0 | |||
| 0.0 | |||
| | | 1/1 | ||
|- | |- | ||
| 1 | |||
| 49.8 | |||
| | | 35/34, 36/35 | ||
|- | |- | ||
| 2 | |||
| 99.5 | |||
| | | 18/17 | ||
|- | |- | ||
| 3 | |||
| 149.3 | |||
| | | 12/11 | ||
|- | |- | ||
| 4 | |||
| 199.0 | |||
| | | 55/49 | ||
|- | |- | ||
| 5 | |||
| 248.8 | |||
| | | 15/13 | ||
|- | |- | ||
| 6 | |||
| 298.5 | |||
| | | 19/16 | ||
|- | |- | ||
| 7 | |||
| 348.3 | |||
| | | 11/9 | ||
|- | |- | ||
| 8 | |||
| 398.0 | |||
| | | 5/4 | ||
|- | |- | ||
| 9 | |||
| 447.8 | |||
| 35/27 | |||
|- | |- | ||
| 10 | |||
| 497.6 | |||
| | | 4/3 | ||
|- | |- | ||
| 11 | |||
| 547.3 | |||
| 70/51 | |||
|- | |- | ||
| 12 | |||
| 597.1 | |||
| | | 24/17 | ||
|- | |- | ||
| 13 | |||
| 646.8 | |||
| | |||
|- | |- | ||
| 14 | |||
| 696.6 | |||
| 3/2 | |||
| | |||
|- | |- | ||
| 15 | |||
| 746.3 | |||
| | | 20/13 | ||
|- | |- | ||
| 16 | |||
| 796.1 | |||
| | | 19/12 | ||
|- | |- | ||
| 17 | |||
| 845.8 | |||
| 44/27, 75/46 | |||
|- | |- | ||
| 18 | |||
| 895.6 | |||
| | | 5/3 | ||
|- | |- | ||
| 19 | |||
| 945.4 | |||
| | | 19/11 | ||
|- | |- | ||
| 20 | |||
| 995.1 | |||
| | | 9/5, 16/9 | ||
|- | |- | ||
| 21 | |||
| 1044.9 | |||
| 64/35 | |||
|- | |- | ||
| 22 | |||
| 1094.6 | |||
| | | 32/17 | ||
|- | |- | ||
| 23 | |||
| 1144.4 | |||
| | |||
|- | |- | ||
| 24 | |||
| 1194.1 | |||
| | | 2/1 | ||
|- | |- | ||
| 25 | |||
| 1243.9 | |||
| | | 39/19, 80/39 | ||
|- | |- | ||
| 26 | |||
| 1293.6 | |||
| 19/9 | |||
|- | |- | ||
| 27 | |||
| 1343.4 | |||
| 50/23 | |||
|- | |- | ||
| 28 | |||
| 1393.2 | |||
| 38/17, 85/38 | |||
|- | |- | ||
| 29 | |||
| 1442.9 | |||
| 23/10 | |||
|- | |- | ||
| 30 | |||
| 1492.7 | |||
| 45/19 | |||
|- | |- | ||
| 31 | |||
| 1542.4 | |||
| 39/16 | |||
|- | |- | ||
| 32 | |||
| 1592.2 | |||
| 5/2 | |||
| | |||
|- | |- | ||
| 33 | |||
| 1641.9 | |||
| 13/5 | |||
| | |||
|- | |- | ||
| 34 | |||
| 1691.7 | |||
| 85/32 | |||
|- | |- | ||
| 35 | |||
| 1741.4 | |||
| 175/64 | |||
|- | |- | ||
| 36 | |||
| 1791.2 | |||
| 45/16 | |||
|- | |- | ||
| 37 | |||
| | | 1841.0 | ||
| 55/19 | |||
|- | |- | ||
| 38 | |||
| 1890.7 | |||
| | | 3/1 | ||
|- | |- | ||
| 39 | |||
| 1940.5 | |||
| 46/15, 135/44 | |||
|- | |- | ||
| 40 | |||
| 1990.2 | |||
| 60/19 | |||
|- | |- | ||
| 41 | |||
| | | 2040.0 | ||
| | | 13/4 | ||
|- | |- | ||
| 42 | |||
| 2089.7 | |||
| 10/3 | |||
| | |||
|- | |- | ||
| 43 | |||
| 2139.5 | |||
| 17/5 | |||
|- | |- | ||
| 44 | |||
| 2189.2 | |||
| 85/24 | |||
|- | |- | ||
| 45 | |||
| 2239.0 | |||
| 51/14 | |||
|- | |- | ||
| 46 | |||
| 2288.8 | |||
| | | 15/4, 19/5 | ||
|- | |- | ||
| 47 | |||
| 2338.5 | |||
| 27/7 | |||
|- | |- | ||
| 48 | |||
| 2388.3 | |||
| | | 4/1 | ||
|- | |- | ||
| 49 | |||
| 2438.0 | |||
| 45/11 | |||
|- | |- | ||
| 50 | |||
| 2487.8 | |||
| 21/5 | |||
|- | |- | ||
| 51 | |||
| 2537.5 | |||
| | | 13/3 | ||
|- | |- | ||
| 52 | |||
| 2587.3 | |||
| 49/11 | |||
|- | |- | ||
| 53 | |||
| 2637.0 | |||
| 55/12 | |||
|- | |- | ||
| 54 | |||
| 2686.8 | |||
| 85/18 | |||
|- | |- | ||
| 55 | |||
| 2736.6 | |||
| 34/7 | |||
|- | |- | ||
| 56 | |||
| 2786.3 | |||
| | | 5/1 | ||
|} | |} | ||
[[ | == See also == | ||
[[Category: | * [[14edf]] – relative edf | ||
* [[24edo]] – relative edo | |||
* [[38edt]] – relative edt | |||
* [[62ed6]] – relative ed6 | |||
* [[83ed11]] – relative ed11 | |||
* [[86ed12]] – relative ed12 | |||
* [[198ed304]] – close to the zeta-optimized tuning for 24edo | |||
[[Category:24edo]] |