16edf: Difference between revisions
m →Intervals: remove trivial truth |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(17 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
16edf corresponds to 27.3522…[[edo]]. It is similar to every third step of [[82edo]] but not quite similar to [[27edo]]; the octave is compressed by 15.45{{c}}, a small but significant deviation. It contains good approximations of the [[7/1|7th]] and [[13/1|13th]] [[harmonic]]s. | |||
It serves as a good approximation to [[halftone]] temperament, containing the [[~]][[7/5]] generator at 13 steps. | |||
=== Harmonics === | |||
{{Harmonics in equal|16|3|2}} | |||
{{Harmonics in equal|16|3|2|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 16edf (continued)}} | |||
=== Subsets and supersets === | |||
Since 16 factors into primes as 2<sup>4</sup>, 16edf contains subset edfs {{EDs|equave=f| 2, 4, and 8 }}. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
{| class="wikitable right-2" | |+ Intervals of 16edf | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
! | ! Halftone[6] notation<br>(using [[ups and downs notation|ups and downs]]) | ||
! Comments | |||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.0 | ||
| [[1/1]] | | [[1/1]] | ||
| C | |||
| | | | ||
|- | |- | ||
| 1 | | 1 | ||
| 43. | | 43.9 | ||
| 40/39, 39/38 | | 40/39, 39/38 | ||
| ^C | |||
| | | | ||
|- | |- | ||
| 2 | | 2 | ||
| 87. | | 87.7 | ||
| [[20/19]] | | [[20/19]] | ||
| Db | |||
| | | | ||
|- | |- | ||
| 3 | | 3 | ||
| 131. | | 131.6 | ||
| 55/51, ([[27/25]]) | | 55/51, ([[27/25]]) | ||
| vD | |||
| | | | ||
|- | |- | ||
| 4 | | 4 | ||
| 175. | | 175.5 | ||
| ([[21/19]]) | | ([[21/19]]) | ||
| D | |||
| | | | ||
|- | |- | ||
| 5 | | 5 | ||
| 219. | | 219.4 | ||
| | | | ||
| vE | |||
| | | | ||
|- | |- | ||
| 6 | | 6 | ||
| 263. | | 263.2 | ||
| ([[7/6]]) | | ([[7/6]]) | ||
| E | |||
| | | | ||
|- | |- | ||
| 7 | | 7 | ||
| 307. | | 307.1 | ||
| | | | ||
| Fb | |||
| | | | ||
|- | |- | ||
| 8 | | 8 | ||
| | | 351.0 | ||
| 60/49, 49/40 | | 60/49, 49/40 | ||
| vF | |||
| | | | ||
|- | |- | ||
| 9 | | 9 | ||
| 394. | | 394.8 | ||
| (44/35) | | (44/35) | ||
| F | |||
| | | | ||
|- | |- | ||
| 10 | | 10 | ||
| 438. | | 438.7 | ||
| ([[9/7]]) | | ([[9/7]]) | ||
| Ab | |||
| | | | ||
|- | |- | ||
| 11 | | 11 | ||
| 482. | | 482.6 | ||
| | | | ||
| vA | |||
| | | | ||
|- | |- | ||
| 12 | | 12 | ||
| 526. | | 526.5 | ||
| ([[19/14]]) | | ([[19/14]]) | ||
| A | |||
| | | | ||
|- | |- | ||
| 13 | | 13 | ||
| 570. | | 570.3 | ||
| ([[25/18]]), 153/110 | | ([[25/18]]), 153/110, 112/81 | ||
| B | |||
| | | | ||
|- | |- | ||
| 14 | | 14 | ||
| 614. | | 614.2 | ||
| ([[10/7]]) | | ([[10/7]]) | ||
| Cb | |||
| | | | ||
|- | |- | ||
| 15 | | 15 | ||
| 658. | | 658.1 | ||
| [[19/13]] | | [[19/13]] | ||
| vC | |||
| | | | ||
|- | |- | ||
| 16 | | 16 | ||
| | | 702.0 | ||
| [[3/2]] | | [[3/2]] | ||
| | | C | ||
| Just perfect fifth | |||
|- | |- | ||
| 17 | | 17 | ||
| 745. | | 745.8 | ||
| [[20/13]] | | [[20/13]] | ||
| | |||
| | | | ||
|- | |- | ||
| 18 | | 18 | ||
| 789. | | 789.7 | ||
| [[30/19]] | | [[30/19]] | ||
| | |||
| | | | ||
|- | |- | ||
| 19 | | 19 | ||
| 833. | | 833.6 | ||
| 55/34 | | 55/34 | ||
| | |||
| | | | ||
|- | |- | ||
| 20 | | 20 | ||
| 877. | | 877.4 | ||
| | |||
| | | | ||
| | | | ||
|- | |- | ||
| 21 | | 21 | ||
| 921. | | 921.3 | ||
| | |||
| | | | ||
| | | | ||
|- | |- | ||
| 22 | | 22 | ||
| 965. | | 965.2 | ||
| [[7/4]] | | [[7/4]] | ||
| | |||
| | | | ||
|- | |- | ||
| 23 | | 23 | ||
| 1009. | | 1009.0 | ||
| | |||
| | | | ||
| | | | ||
|- | |- | ||
| 24 | | 24 | ||
| 1052. | | 1052.9 | ||
| 90/49, ([[11/6]]) | | 90/49, ([[11/6]]) | ||
| | |||
| | | | ||
|- | |- | ||
| 25 | | 25 | ||
| 1096. | | 1096.8 | ||
| (66/35) | | (66/35) | ||
| | |||
| | | | ||
|- | |- | ||
| 26 | | 26 | ||
| 1140. | | 1140.7 | ||
| | | | ||
| | |||
| | | | ||
|- | |- | ||
| 27 | | 27 | ||
| 1184. | | 1184.5 | ||
| | | | ||
| | |||
| | | | ||
|- | |- | ||
| 28 | | 28 | ||
| 1228. | | 1228.4 | ||
| 128/63 | | 128/63 | ||
| | | | ||
| | |||
|- | |- | ||
| 29 | | 29 | ||
| 1272. | | 1272.3 | ||
| 25/12 | | 25/12 | ||
| | |||
| | | | ||
|- | |- | ||
| 30 | | 30 | ||
| 1316. | | 1316.2 | ||
| 15/7 | | 15/7 | ||
| | |||
| | | | ||
|- | |- | ||
| 31 | | 31 | ||
| 1360. | | 1360.0 | ||
| 57/26 | | 57/26 | ||
| | |||
| | | | ||
|- | |- | ||
| 32 | | 32 | ||
| 1403. | | 1403.9 | ||
| [[9/4]] | | [[9/4]] | ||
| | | | ||
| Pythagorean major ninth | |||
|} | |} | ||
== | == Music == | ||
; [[Nae Ayy]] | |||
* [https://www.youtube.com/watch?v=8YegsoiO1Co ''Neptune''] (2021) | |||
; [[nationalsolipsism]] | |||
* [https://www.youtube.com/watch?v=-RUeO6hJLBY ''schizophrenic lullaby fugue''] (2011) | |||
== See also == | |||
* [[27edo]] – relative edo | |||
* [[43edt]] – relative edt | |||
* [[70ed6]] – relative ed6 | |||
* [[90ed10]] – relative ed10 | |||
* [[97ed12]] – relative ed12 | |||
{{Todo|expand}} | |||
[[Category: | [[Category:27edo]] | ||