Escapade family: Difference between revisions
mNo edit summary |
m Text replacement - "Category:Temperament families" to "Category:Temperament families Category:Pages with mostly numerical content" |
||
(54 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
Extensions of escapade include escapist (21 & 22), tempering out [[225/224]] and mapping 7 to | <div style="float: right;"> | ||
[[File:Escapade.png|alt=Escapade.png|thumb|600x560px|An image of the tuning spectrum of 2.3.5.11 escapade, in terms of the generator; [[Edo]] [[patent val]] tunings are marked with vertical lines whose length indicates the edo's tolerance, i.e. half of its step size in either direction of just, and some small edos supporting the temperament are labeled.]] | |||
</div> | |||
The '''escapade family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[escapade comma]], {{monzo| 32 -7 -9 }}, of size 9.492 [[cent]]s. The defining feature of this comma is splitting [[5/3]] into sixteen quartertones of which [[5/4]] makes up seven and [[4/3]] makes up nine; therefore [[16/15]] is two generator steps. It most naturally manifests as a [[2.3.5.11 subgroup|2.3.5.11-subgroup]] temperament, tempering out [[4000/3993]] and [[5632/5625]]. | |||
Extensions of escapade to incorporate prime 7 (and therefore the full [[11-limit]]) include escapist ({{nowrap| 21 & 22 }}), tempering out [[225/224]] and mapping 7 to −4 generators; escaped ({{nowrap| 22 & 87 }}), tempering out [[245/243]] and mapping 7 to −26 generators; alphaquarter ({{nowrap| 65d & 87 }}), tempering out [[5120/5103]] and mapping 7 to 61 generators; septisuperfourth (a.k.a. biscapade) ({{nowrap| 22 & 86 }}), tempering out [[6144/6125]], splitting the octave in half and mapping 7 to −15 generators; and arch ({{nowrap| 43 & 87 }}), tempering out [[3136/3125]] and splitting the generator into two [[64/63]] intervals; all are considered below. | |||
== Escapade == | == Escapade == | ||
For intervals along the chain of generators in the 2.3.5.11.31 subgroup temperament, out to 22 generators up, see the third column of [[16ed5/3#Intervals]]. | For intervals along the chain of generators in the 2.3.5.11.31 subgroup temperament, out to 22 generators up, see the third column of [[16ed5/3#Intervals]]. | ||
=== 5-limit === | |||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: 4294967296/4271484375 | [[Comma list]]: 4294967296/4271484375 ({{monzo|32 -7 -9}}) | ||
{{Mapping|legend=1| 1 2 2 | 0 -9 7 }} | {{Mapping|legend=1| 1 2 2 | 0 -9 7 }} | ||
Line 15: | Line 22: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = | * [[CTE]]: ~2 = 1200.0000, ~16875/16384 = 55.3052 | ||
* [[POTE]]: ~2 = | * [[POTE]]: ~2 = 1200.000, ~16875/16384 = 55.293 | ||
{{Optimal ET sequence|legend=1| 21, 22, 43, 65, 152, 217, 586, 803 }} | {{Optimal ET sequence|legend=1| 21, 22, 43, 65, 152, 217, 586, 803 }} | ||
[[Badness]]: 0.083778 | [[Badness]] (Smith): 0.083778 | ||
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 702.253 || +0.298 | |||
|- | |||
| 5/4 || 387.136 || +0.823 | |||
|} | |||
=== 2.3.5.11 subgroup === | === 2.3.5.11 subgroup === | ||
Since (an ideally slightly flat) 4/3 is split in three by the interval of 3 generators, it makes sense to equate that interval to [[11/10]] by tempering out | Since (an ideally slightly flat) 4/3 is split in three by the interval of 3 generators, it makes sense to equate that interval to [[11/10]] by tempering out 4000/3993, and therefore the generator to {{nowrap|(11/10)/(16/15) {{=}} [[33/32]]}}; this does minimal damage to the temperament. This structure in 2.3.5.11 occurs in all extensions of escapade to include prime 7, and therefore will be considered the fount of all further extensions. | ||
Subgroup: 2.3.5.11 | Subgroup: 2.3.5.11 | ||
Comma list: 4000/3993, 5632/5625 | Comma list: 4000/3993 ({{monzo|5 -1 3 -3}}), 5632/5625 ({{monzo|9 -2 -4 1}}) | ||
Mapping: {{Mapping| 1 2 2 3 | 0 -9 7 10 }} | Mapping: {{Mapping| 1 2 2 3 | 0 -9 7 10 }} | ||
Optimal tuning (CTE): ~2 = | Optimal tuning (CTE): ~2 = 1200.0000, ~33/32 = 55.2760 | ||
{{Optimal ET sequence|legend=1| 21, 22, 43, 65, 87, 152, 369, 521e, 1194bcee, 1715bceeee }} | {{Optimal ET sequence|legend=1| 21, 22, 43, 65, 87, 152, 369, 521e, 1194bcee, 1715bceeee }} | ||
Badness: 0.0107 | Badness: 0.0107 | ||
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 702.516 || +0.561 | |||
|- | |||
| 5/4 || 386.932 || +0.618 | |||
|- | |||
| 11/8 || 552.760 || +1.442 | |||
|} | |||
=== 2.3.5.11.31 subgroup === | === 2.3.5.11.31 subgroup === | ||
One may | One may note that the generator represents the square root of [[16/15]] and therefore it would be logical to also temper out {{nowrap| S31 {{=}} [[961/960]] }} so that the generator is equated to {{nowrap| [[32/31]] ~ [[31/30]] }} in addition to 33/32. | ||
Subgroup: 2.3.5.11.31 | Subgroup: 2.3.5.11.31 | ||
Comma list: 496/495, 961/960, 4000/3993 | Comma list: 496/495 ({{monzo| 4 -2 -1 -1 1 }}), 961/960 ({{monzo| -6 -1 -1 0 2 }}), 4000/3993 ({{monzo| 5 -1 3 -3 0 }}) | ||
Mapping: {{mapping| 1 2 2 3 5 | 0 -9 7 10 -1 }} | |||
Optimal tuning (CTE): ~2 = 1200.000, ~32/31 = 55.276 | |||
{{Optimal ET sequence|legend=0| 21, 22, 43, 65, 87, 152, 369, 521e, 673e, 1194bcee, 1867bceeee }} | |||
Badness (Sintel): 0.251 | |||
{ | {| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | ||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 702.518 || +0.563 | |||
|- | |||
| 5/4 || 386.931 || +0.617 | |||
|- | |||
| 11/8 || 552.758 || +1.440 | |||
|- | |||
| 31/16 || 1144.724 || -0.311 | |||
|} | |||
= Strong extensions = | |||
{| class="wikitable center-all" | |||
|+ style="font-size: 105%;" | Map to strong full 7- and 11-limit extensions | |||
|- | |||
! rowspan="1" | Extension !! rowspan="1" | Mapping of 7 !! rowspan="1" | Tuning range* | |||
|- | |||
| [[#Escapist|Escapist]] || -4 || ↓ [[65edo|65]] | |||
|- | |||
| [[#Alphaquarter|Alphaquarter]] || +61 || ↑ 65 <br> ↓ [[87edo|87]] | |||
|- | |||
| [[#Escaped|Escaped]] || -26 || ↑ 87 | |||
|} | |||
<nowiki/>* Defined as the range in which the extension specified has a better mapping of 7 compared to its neighboring extensions | |||
== | == Escaped == | ||
This temperament | ''[[#Strong extensions|Return to the map]]'' | ||
This temperament was also known as "sensa" in earlier materials because it tempers out 245/243, 352/351, and 385/384 as a sensamagic temperament. ''Not to be confused with the {{nowrap| 19e & 27 }} temperament (sensi extension).'' | |||
Here, [[245/243]] is tempered out so that [[9/7]] is equated to the square root of 5/3 (at 8 generators) present in the temperament. This works best where 5/3 is slightly flat, therefore on the end of the spectrum approaching [[22edo]]. | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: | [[Comma list]]: 245/243, 65625/65536 | ||
{{Mapping|legend=1| 1 2 2 | {{Mapping|legend=1| 1 2 2 4 | 0 -9 7 -26 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~28/27 = 55.122 | |||
{{Optimal ET sequence|legend=1| 22, 65, 87, 196, 283 }} | |||
{{Optimal ET sequence|legend=1| | |||
[[Badness]]: 0. | [[Badness]] (Smith): 0.088746 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: | Comma list: 245/243, 385/384, 4000/3993 | ||
Mapping: {{mapping| 1 2 2 4 3 | 0 -9 7 -26 10 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~28/27 = 55.126 | |||
Optimal | {{Optimal ET sequence|legend=0| 22, 65, 87, 196, 283 }} | ||
Badness (Smith): 0.035844 | |||
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 703.831 || +1.876 | |||
|- | |||
| 5/4 || 385.909 || -0.405 | |||
|- | |||
| 7/4 || 966.624 || -2.202 | |||
|- | |||
| 11/8 || 551.299 || -0.019 | |||
|} | |||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 245/243, 352/351, 385/384, 625/624 | ||
Mapping: {{mapping| 1 2 2 3 | Mapping: {{mapping| 1 2 2 4 3 2 | 0 -9 7 -26 10 37 }} | ||
Optimal tuning (POTE): ~2 = | Optimal tuning (POTE): ~2 = 1200.000, ~28/27 = 55.138 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 22, 65, 87, 283 }} | ||
Badness: 0. | Badness (Smith): 0.031366 | ||
== | == Alphaquarter == | ||
''[[#Strong extensions|Return to the map]]'' | |||
Given the slightly sharp ~[[3/2]] in ideal tunings of escapade (between [[65edo]] and [[87edo]]), it does very little damage to temper out [[5120/5103]] to extend it to prime 7; the cost is that the harmonic 7 is exceedingly complex, located all the way at 61 generators up. | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: | [[Comma list]]: 5120/5103, 29360128/29296875 | ||
{{Mapping|legend=1| 1 2 2 | {{Mapping|legend=1| 1 2 2 0 | 0 -9 7 61 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~16128/15625 = 55.243 | |||
{{Optimal ET sequence|legend=1| 65d, 87, 152, 239, 391 }} | |||
[[Badness]] (Smith): 0.116594 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: | Comma list: 3025/3024, 4000/3993, 5120/5103 | ||
Mapping: {{mapping| 1 2 2 0 3 | 0 -9 7 61 10 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~33/32 = 55.243 | |||
Optimal | {{Optimal ET sequence|legend=0| 65d, 87, 152, 239, 391 }} | ||
Badness (Smith): 0.029638 | |||
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 702.918 || +0.963 | |||
|- | |||
| 5/4 || 386.620 || +0.306 | |||
|- | |||
| 7/4 || 969.113 || +0.287 | |||
|- | |||
| 11/8 || 552.314 || +0.996 | |||
|} | |||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 352/351, 625/624, 847/845, 1575/1573 | ||
Mapping: {{mapping| 1 2 2 0 3 2 | 0 -9 7 61 10 37 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~33/32 = 55.236 | |||
Optimal | {{Optimal ET sequence|legend=0| 65d, 87, 152f, 239f }} | ||
Badness (Smith): 0.025344 | |||
== Escapist == | |||
''[[#Strong extensions|Return to the map]]'' | |||
This temperament makes the identification of the 4-generator interval, representing (16/15)<sup>2</sup>, with [[8/7]] by tempering out [[225/224]] (along with [[12288/12005]]); however, this is somewhat inaccurate as the ~16/15 in escapade is slightly flat, while for a good marvel tuning it needs to be tempered sharpward to equate it with [[15/14]]. | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: | [[Comma list]]: 225/224, 12288/12005 | ||
{{Mapping|legend=1| 1 2 2 | {{Mapping|legend=1| 1 2 2 3 | 0 -9 7 -4 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~49/48 = 55.327 | |||
{{Optimal ET sequence|legend=1| 21, 22, 43, 65d }} | |||
[[Badness]] (Smith): 0.077950 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: | Comma list: 99/98, 176/175, 2560/2541 | ||
Mapping: {{mapping| 1 2 2 3 3 | 0 -9 7 -4 10 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~33/32 = 55.354 | |||
Optimal | {{Optimal ET sequence|legend=0| 21, 22, 43, 65d }} | ||
Badness (Smith): 0.036700 | |||
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 701.626 || -0.329 | |||
|- | |||
| 5/4 || 387.624 || +1.310 | |||
|- | |||
| 7/4 || 978.501 || +9.675 | |||
|- | |||
| 11/8 || 553.749 || +2.431 | |||
|} | |||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 78/77, 99/98, 176/175, 507/500 | ||
Mapping: {{mapping| 1 2 2 3 3 3 | 0 -9 7 -4 10 15 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~26/25 = 55.550 | |||
Optimal | {{Optimal ET sequence|legend=0| 21, 22, 43 }} | ||
Badness (Smith): 0.035261 | |||
= Weak extensions = | |||
{| class="wikitable center-all" | |||
|+ style="font-size: 105%;" | Map to weak extensions | |||
|- | |||
! rowspan="2" | Extensions !! rowspan="2" | Periods per octave !! colspan="2" | Position of original generator | |||
|- | |||
! Number of generators !! Number of periods | |||
|- | |||
| [[#Septisuperfourth|Septisuperfourth]] || period = 1/2 octave || 1 generator || + 0 periods | |||
|- | |||
| [[#Arch|Arch]] || period = octave || 2 generators || + 0 periods | |||
|} | |||
== Septisuperfourth == | == Septisuperfourth == | ||
''[[#Weak extensions|Return to map]]'' | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 191: | Line 321: | ||
: mapping generators: ~343/243, ~16875/16384 | : mapping generators: ~343/243, ~16875/16384 | ||
[[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~16875/16384 = 55.320 | [[Optimal tuning]] ([[POTE]]): ~343/243 = 1\2, ~16875/16384 = 55.320 | ||
Line 198: | Line 326: | ||
{{Optimal ET sequence|legend=1| 22, 86, 108, 130, 152, 282 }} | {{Optimal ET sequence|legend=1| 22, 86, 108, 130, 152, 282 }} | ||
[[Badness]]: 0.059241 | [[Badness]] (Smith): 0.059241 | ||
=== 11-limit === | === 11-limit === | ||
Line 207: | Line 335: | ||
Mapping: {{mapping| 2 4 4 7 6 | 0 -9 7 -15 10 }} | Mapping: {{mapping| 2 4 4 7 6 | 0 -9 7 -15 10 }} | ||
Optimal tuning (POTE): ~99/70 = | Optimal tuning (POTE): ~99/70 = 600.000, ~33/32 = 55.304 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 22, 86, 108, 130, 152, 282 }} | ||
Badness (Smith): 0.024619 | |||
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 702.070 || +0.115 | |||
|- | |||
| 5/4 || 387.279 || +0.965 | |||
|- | |||
| 7/4 || 970.117 || +1.291 | |||
|- | |||
| 11/8 || 553.255 || +1.937 | |||
|} | |||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 220: | Line 364: | ||
Mapping: {{mapping| 2 4 4 7 6 11 | 0 -9 7 -15 10 -39 }} | Mapping: {{mapping| 2 4 4 7 6 11 | 0 -9 7 -15 10 -39 }} | ||
Optimal tuning (POTE): ~99/70 = | Optimal tuning (POTE): ~99/70 = 600.000, ~33/32 = 55.325 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 22f, 108f, 130, 282 }} | ||
Badness: 0.022887 | Badness (Smith): 0.022887 | ||
==== Septisuperquad ==== | ==== Septisuperquad ==== | ||
Line 235: | Line 379: | ||
Mapping: {{mapping| 2 4 4 7 6 5 | 0 -9 7 -15 10 26 }} | Mapping: {{mapping| 2 4 4 7 6 5 | 0 -9 7 -15 10 26 }} | ||
Optimal tuning (POTE): ~55/39 = | Optimal tuning (POTE): ~55/39 = 600.000, ~33/32 = 55.359 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 22, 108, 130 }} | ||
Badness: 0.033038 | Badness (Smith): 0.033038 | ||
== Arch == | == Arch == | ||
''[[#Weak extensions|Return to map]]'' | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 249: | Line 396: | ||
: mapping generators: ~2, ~64/63 | : mapping generators: ~2, ~64/63 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~64/63 = 27.668 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~64/63 = 27.668 | ||
Line 256: | Line 401: | ||
{{Optimal ET sequence|legend=1| 43, 87, 130, 217, 347, 824c, 1171c, 1518cd }} | {{Optimal ET sequence|legend=1| 43, 87, 130, 217, 347, 824c, 1171c, 1518cd }} | ||
[[Badness]]: 0.094345 | [[Badness]] (Smith): 0.094345 | ||
=== 11-limit === | === 11-limit === | ||
Line 265: | Line 410: | ||
Mapping: {{mapping| 1 2 2 2 3 | 0 -18 14 35 20 }} | Mapping: {{mapping| 1 2 2 2 3 | 0 -18 14 35 20 }} | ||
Optimal tuning (POTE): ~2 = | Optimal tuning (POTE): ~2 = 1200.000, ~64/63 = 27.663 | ||
{{Optimal ET sequence|legend=0| 43, 87, 130, 217, 347e, 911cde }} | |||
Badness (Smith): 0.036541 | |||
{| class="wikitable center-1 center-2 center-3 center-4 mw-collapsible mw-collapsed" | |||
|+ style="font-size: 105%;" | Harmonics | |||
|- | |||
! rowspan="2" | Prime harmonic !! colspan="2" | Tunings | |||
|- | |||
! CTE tuning !! Deviation from just | |||
|- | |||
| 3/2 || 702.178 || +0.223 | |||
|- | |||
| 5/4 || 387.195 || +0.881 | |||
|- | |||
| 7/4 || 967.987 || -0.839 | |||
|- | |||
| 11/8 || 553.135 || +1.817 | |||
|} | |||
=== 13-limit === | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Line 278: | Line 439: | ||
Mapping: {{mapping| 1 2 2 2 3 4 | 0 -18 14 35 20 -13 }} | Mapping: {{mapping| 1 2 2 2 3 4 | 0 -18 14 35 20 -13 }} | ||
Optimal tuning (POTE): ~2 = | Optimal tuning (POTE): ~2 = 1200.000, ~64/63 = 27.660 | ||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 43, 87, 130, 217, 347e, 564e }} | ||
Badness: 0.019504 | Badness (Smith): 0.019504 | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Escapade family| ]] <!-- main article --> | [[Category:Escapade family| ]] <!-- main article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |