Vulture family: Difference between revisions

Xenllium (talk | contribs)
Tags: Mobile edit Mobile web edit
 
(57 intermediate revisions by 10 users not shown)
Line 1: Line 1:
__FORCETOC__
{{interwiki
The '''vulture family''' of [[temperament|temperament]]s [[tempering_out|tempers out]] the [[vulture comma]], |24 -21 4> = 10485760000/10460353203, a small [[5-limit]] comma of size 4.1998 [[cent]]s. Aside from vulture itself, the family contains [[Hemifamity_temperaments#Buzzard|buzzard]], considered elsewhere, and condor.
| de = Vulture
| en = Vulture_family
| es =
| ja =
}}
{{Technical data page}}
The '''vulture family''' of [[temperament]]s [[tempering out|tempers out]] the [[vulture comma]] ({{monzo|legend=1| 24 -21 4 }}, [[ratio]]: 10 485 760 000 / 10 460 353 203), a small [[5-limit]] comma of 4.2 [[cent]]s.  


[[Comma|Comma]]: 10485760000/10460353203
Temperaments discussed elsewhere include [[Landscape microtemperaments #Terture|terture]] and [[Buzzardsmic clan #Buzzard|buzzard]]. Considered below are septimal vulture, condor, eagle, and turkey.


POTE generator: ~320/243 = 475.5426
== Vulture ==
The generator of the vulture temperament is a grave fourth of [[320/243]], that is, a [[4/3|perfect fourth]] minus a [[81/80|syntonic comma]]. Four of these make a [[3/1|perfect twelfth]]. Its [[ploidacot]] is alpha-tetracot. It is a member of the [[syntonic–diatonic equivalence continuum]] with {{nowrap|''n'' {{=}} 4}}, so it equates a [[256/243|Pythagorean limma]] with a stack of four syntonic commas. It is also in the [[schismic–Mercator equivalence continuum]] with {{nowrap|''n'' {{=}} 4}}, so unless [[53edo]] is used as a tuning, the [[schisma]] is always observed.  


Map: [<1 0 -6|, <0 4 21|]
[[Subgroup]]: 2.3.5


EDOs: [[5edo|5]], [[48edo|48]], [[53edo|53]], [[164edo|164]], [[217edo|217]], [[270edo|270]], [[323edo|323]], [[2531edo|2531]]
[[Comma list]]: 10485760000/10460353203


Badness: 0.0414
{{Mapping|legend=1| 1 0 -6 | 0 4 21 }}


=Vulture=
: mapping generators: ~2, ~320/243
Commas: 4375/4374, 33554432/33480783


POTE generator: ~320/243 = 475.5511
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~320/243 = 475.5351
: [[error map]]: {{val| 0.0000 +0.1855 -0.0758 }}
* [[POTE]]: ~2 = 1200.000, ~320/243 = 475.5426
: error map: {{val| 0.0000 +0.2154 +0.0811 }}


Map: [<1 0 -6 25|, <0 4 21 -56|]
{{Optimal ET sequence|legend=1| 53, 164, 217, 270, 323, 2531, 2854b, 3177b, …, 4469b }}


EDOs: 53, 164, 217, 270, [[593edo|593]], [[863edo|863]], [[1133edo|1133]]
[[Badness]]:
* Smith: 0.041431
* Dirichlet: 0.972


Badness: 0.0370
== Septimal vulture ==
Septimal vulture can be described as the {{nowrap| 53 & 270 }} microtemperament, tempering out the [[ragisma]], 4375/4374 and the [[garischisma]], 33554432/33480783 ({{monzo| 25 -14 0 -1 }}) aside from the vulture comma. [[270edo]] is a good tuning for this temperament, with generator 107\270. The harmonic 7 is found at -14 fifths or {{nowrap| (-14) × 4 {{=}} -56 }} generator steps, so that the smallest [[mos scale]] that includes it is the 58-note one, though for larger scope of harmony, you could try the 111- or 164-note one. For a much simpler mapping of 7 at the cost of higher error, you could try [[#Buzzard|buzzard]].  


==11-limit==
It can be extended to the 11-limit by identifying a stack of four [[5/4]]'s as [[11/9]], tempering out [[5632/5625]], and to the 13-limit by identifying the hemitwelfth as [[26/15]], tempering out [[676/675]]. Furthermore, the generator of vulture is very close to [[25/19]]; a stack of three generator steps octave-reduced thus represents its fifth complement, [[57/50]]. This corresponds to tempering out [[1216/1215]] with the effect of equating the schisma with [[513/512]] and [[361/360]] in addition to many 11- and 13-limit commas. 270edo remains an excellent tuning in all cases.
Commas: 4375/4374, 5632/5625, 41503/41472


POTE generator: ~320/243 = 475.5567
[[Subgroup]]: 2.3.5.7


Map: [<1 0 -6 25 -33|, <0 4 21 -56 92|]
[[Comma list]]: 4375/4374, 33554432/33480783


EDOs: 53, 217, 270
{{Mapping|legend=1| 1 0 -6 25 | 0 4 21 -56 }}


Bad: 0.0319
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.0000, ~320/243 = 475.5528
: [[error map]]: {{val| 0.0000 +0.2561 +0.2945 +0.2188 }}
* [[POTE]]: ~2 = 1200.0000, ~320/243 = 475.5511
: error map: {{val| 0.0000 +0.2495 +0.2601 +0.3106 }}


==13-limit==
{{Optimal ET sequence|legend=1| 53, 164, 217, 270, 593, 863, 1133 }}
Commas: 676/675, 1001/1000, 4375/4374, 4225/4224


POTE generator: ~320/243 = 475.5572
[[Badness]] (Smith): 0.036985


Map: [<1 0 -6 25 -33 -7|, <0 4 21 -56 92 27|]
=== 11-limit ===
Subgroup: 2.3.5.7.11


EDOs: 53, 217, 270
Comma list: 4375/4374, 5632/5625, 41503/41472


Badness: 0.0188
Mapping: {{mapping| 1 0 -6 25 -33 | 0 4 21 -56 92 }}


=Condor=
Optimal tunings:
Commas: 10976/10935, 40353607/40000000
* CTE: ~2 = 1200.0000, ~320/243 = 475.5558
* POTE: ~2 = 1200.0000, ~320/243 = 475.5567


POTE generator: ~81/56 = 641.4791
{{Optimal ET sequence|legend=0| 53, 217, 270, 2107c, 2377bc }}


Map: [<1 8 36 29|, <0 -12 -63 -49|]
Badness (Smith): 0.031907


EDOs: 58, 159, 217, 275
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Badness: 0.1547
Comma list: 676/675, 1001/1000, 4096/4095, 4375/4374


==11-limit==
Mapping: {{mapping| 1 0 -6 25 -33 -7 | 0 4 21 -56 92 27 }}
Commas: 441/440, 4000/3993, 10976/10935


POTE generator: ~81/56 = 641.4822
Optimal tunings:
* CTE: ~2 = 1200.0000, ~320/243 = 475.5566
* POTE: ~2 = 1200.0000, ~320/243 = 475.5572


Map: [<1 8 36 29 35|, <0 -12 -63 -49 -59|]
{{Optimal ET sequence|legend=0| 53, 217, 270 }}


EDOs: 58, 159, 217
Badness (Smith): 0.018758


Badness: 0.0484
==== 2.3.5.7.11.13.19 subgroup ====
Subgroup: 2.3.5.7.11.13.17.19


==13-limit==
Comma list: 676/675, 1001/1000, 1216/1215, 1540/1539, 1729/1728
Commas: 364/363, 441/440, 676/675, 10976/10935


POTE generator: ~81/56 = 641.4797
Mapping: {{mapping| 1 0 -6 25 -33 -7 -12 | 0 4 21 -56 92 27 41 }}


Map: [<1 8 36 29 35 47|, <0 -12 -63 -49 -59 -81|]
Optimal tunings:  
* CTE: ~2 = 1200.0000, ~25/19 = 475.5561
* CWE: ~2 = 1200.0000, , ~25/19 = 475.5569


EDOs: 58, 159, 217
{{Optimal ET sequence|legend=0| 53, 217, 270 }}


Badness: 0.0255
Badness (Smith): 0.00704


[[Category:family]]
=== Semivulture ===
[[Category:temperament]]
Subgroup: 2.3.5.7.11
[[Category:vulture]]
 
Comma list: 3025/3024, 4375/4374, 33554432/33480783
 
Mapping: {{mapping| 2 0 -12 50 41 | 0 4 21 -56 -43 }}
 
: mapping generators: ~99/70, ~320/243
 
Optimal tunings:
* CTE: ~99/70 = 600.0000, ~320/243 = 475.5523
* POTE: ~99/70 = 600.0000, ~320/243 = 475.5496
 
{{Optimal ET sequence|legend=0| 106, 164, 270, 916, 1186, 1456 }}
 
Badness (Smith): 0.040799
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 676/675, 3025/3024, 4096/4095, 4375/4374
 
Mapping: {{mapping| 2 0 -12 50 41 -14 | 0 4 21 -56 -43 27 }}
 
Optimal tunings:
* CTE: ~99/70 = 600.0000, ~320/243 = 475.5540
* POTE: ~99/70 = 600.0000, ~320/243 = 475.553
 
{{Optimal ET sequence|legend=0| 106, 164, 270 }}
 
Badness (Smith): 0.035458
 
== Condor ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 10976/10935, 40353607/40000000
 
{{Mapping|legend=1| 1 8 36 29 | 0 -12 -63 -49 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~81/56 = 641.4791
 
{{Optimal ET sequence|legend=1| 58, 159, 217 }}
 
[[Badness]]: 0.154715
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 4000/3993, 10976/10935
 
Mapping: {{mapping| 1 8 36 29 35 | 0 -12 -63 -49 -59 }}
 
Optimal tuning (POTE): ~2 = 1\1, 81/56 = 641.4822
 
{{Optimal ET sequence|legend=1| 58, 101cd, 159, 217 }}
 
Badness: 0.048401
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 364/363, 441/440, 676/675, 10976/10935
 
Mapping: {{mapping| 1 8 36 29 35 47 | 0 -12 -63 -49 -59 -81 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4797
 
{{Optimal ET sequence|legend=1| 58, 159, 217 }}
 
Badness: 0.025469
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 364/363, 441/440, 595/594, 676/675, 8624/8619
 
Mapping: {{mapping| 1 8 36 29 35 47 -5 | 0 -12 -63 -49 -59 -81 17 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4794
 
{{Optimal ET sequence|legend=1| 58, 159, 217 }}
 
Badness: 0.021984
 
== Eagle ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 10485760000/10460353203
 
{{Mapping|legend=1| 2 4 9 8 | 0 -8 -42 -23 }}
 
: mapping generators: ~177147/125440, ~28/27
 
[[Optimal tuning]] ([[POTE]]): ~177147/125440 = 1\2, ~28/27 = 62.229
 
{{Optimal ET sequence|legend=1| 58, 154c, 212, 270, 752, 1022, 1292, 2854b }}
 
[[Badness]]: 0.059498
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 9801/9800, 19712/19683
 
Mapping: {{mapping| 2 4 9 8 12 | 0 -8 -42 -23 -49 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.224
 
{{Optimal ET sequence|legend=1| 58, 154ce, 212, 270 }}
 
Badness: 0.024885
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 676/675, 1001/1000, 1716/1715, 10648/10647
 
Mapping: {{mapping| 2 4 9 8 12 13 | 0 -8 -42 -23 -49 -54 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.220
 
{{Optimal ET sequence|legend=1| 58, 154cef, 212, 270 }}
 
Badness: 0.016282
 
== Turkey ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4802000/4782969, 5250987/5242880
 
{{Mapping|legend=1| 1 8 36 0 | 0 -16 -84 7 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1715/1296 = 481.120
 
{{Optimal ET sequence|legend=1| 5, 207c, 212, 429 }}
 
[[Badness]]: 0.210964
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 19712/19683, 42875/42768, 160083/160000
 
Mapping: {{mapping| 1 8 36 0 64 | 0 -16 -84 7 -151 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.120
 
{{Optimal ET sequence|legend=1| 212, 429 }}
 
Badness: 0.079694
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 676/675, 1001/1000, 19712/19683, 31213/31104
 
Mapping: {{mapping| 1 8 36 0 64 47 | 0 -16 -84 7 -151 -108 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.118
 
{{Optimal ET sequence|legend=1| 212, 217, 429 }}
 
Badness: 0.043787
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Vulture family| ]] <!-- main article -->
[[Category:Vulture| ]] <!-- key article -->
[[Category:Rank 2]]