Semicomma family: Difference between revisions
m Remove originator of temperaments |
m Text replacement - "Category:Temperament families" to "Category:Temperament families Category:Pages with mostly numerical content" |
||
(26 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
The 5-limit parent comma for the '''semicomma family''' is the [[semicomma]] | {{Technical data page}} | ||
The [[5-limit]] parent [[comma]] for the '''semicomma family''' of [[regular temperament|temperaments]] is the [[semicomma]] ({{monzo|legend=1| -21 3 7 }}, [[ratio]]: 2109375/2097152). This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor sixths. | |||
== Orson == | == Orson == | ||
'''Orson''', first discovered by [[Erv Wilson]], is the [[5-limit]] temperament tempering out the semicomma. It has a [[generator]] of [[75/64]], which is sharper than [[7/6]] by [[225/224]] when untempered, and less sharp than that in any good orson tempering, for example [[53edo | '''Orson''', first discovered by [[Erv Wilson]]{{citation needed}}, is the [[5-limit]] temperament [[tempering out]] the semicomma. It has a [[generator]] of [[~]][[75/64]], seven of which give the [[3/1|perfect twelfth]]; its [[ploidacot]] is alpha-heptacot. The generator is sharper than [[7/6]] by [[225/224]] when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell. | ||
Subgroup: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
[[Comma list]]: 2109375/2097152 | [[Comma list]]: 2109375/2097152 | ||
{{Mapping|legend=1| 1 0 3 | 0 7 -3 }} | |||
[[POTE | : mapping generators: ~2, ~75/64 | ||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~2 = 1200.000, ~75/64 = 271.670 | |||
: [[error map]]: {{val| 0.000 -0.264 -1.324 }} | |||
* [[POTE]]: ~2 = 1200.000, ~75/64 = 271.627 | |||
: error map: {{val| 0.000 -0.564 -1.195 }} | |||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
* [[ | * 5-odd-limit [[diamond monotone]]: ~75/64 = [257.143, 276.923] (3\14 to 3\13) | ||
* [[ | * 5-odd-limit [[diamond tradeoff]]: ~75/64 = [271.229, 271.708] (1/3-comma to 2/7-comma) | ||
{{ | {{Optimal ET sequence|legend=1| 22, 31, 53, 190, 243, 296, 645c }} | ||
[[Badness]]: 0.040807 | [[Badness]] (Smith): 0.040807 | ||
=== | === Overview to extensions === | ||
The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which 7-limit family member we are looking at. Adding 65625/65536 (or 225/224) leads to orwell, but we could also add | The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which 7-limit family member we are looking at. Adding 65625/65536 (or 225/224) leads to orwell, but we could also add | ||
* 1029/1024, leading to the 31& | * 1029/1024, leading to the {{nowrap| 31 & 159 }} temperament (triwell), or | ||
* 2401/2400, giving the 31& | * 2401/2400, giving the {{nowrap| 31 & 243 }} temperament (quadrawell), or | ||
* 4375/4374, giving the 53& | * 4375/4374, giving the {{nowrap| 53 & 243 }} temperament (sabric). | ||
== Orwell == | == Orwell == | ||
{{ | {{Main| Orwell }} | ||
So called because 19\84 (as a | So called because 19\84 (as a fraction of the octave) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It is compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the {{nowrap| 22 & 31 }} temperament. It is a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5-, 7- and 11-limit, but it does use its second-closest approximation to 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out [[2430/2401]], the nuwell comma, [[1728/1715]], the orwellisma, [[225/224]], the septimal kleisma, and [[6144/6125]], the porwell comma. | ||
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered | The 11-limit version of orwell tempers out [[99/98]], which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1–7/6–11/8–8/5 chord is natural to orwell. | ||
Orwell has | Orwell has [[mos scale]]s of size 9, 13, 22 and 31. The 9-note mos is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has [[Retuning 12edo to Orwell9|considerable harmonic resources]] despite its absence of 5-limit triads. The 13-note mos has those, and of course the 22- and 31-note mos are very well supplied with everything. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 225/224, 1728/1715 | [[Comma list]]: 225/224, 1728/1715 | ||
{{Mapping|legend=1| 1 0 3 1 | 0 7 -3 8 }} | |||
{{ | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.000, ~7/6 = 271.513 | |||
[[POTE | : [[error map]]: {{val| 0.000 -1.364 -0.853 +3.278 }} | ||
* [[POTE]]: ~2 = 1200.000, ~7/6 = 271.509 | |||
: error map: {{val| 0.000 -1.394 -0.840 +3.243 }} | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit]]: ~7/6 = {{monzo| 2/11 0 -1/11 1/11 }} | * [[7-odd-limit]]: ~7/6 = {{monzo| 2/11 0 -1/11 1/11 }} | ||
: | : {{monzo list| 1 0 0 0 | 14/11 0 -7/11 7/11 | 27/11 0 3/11 -3/11 | 27/11 0 -8/11 8/11 }} | ||
: [[Eigenmonzo]] | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5 | ||
* 9-odd-limit: ~7/6 = {{monzo| 3/17 2/17 -1/17 }} | * [[9-odd-limit]]: ~7/6 = {{monzo| 3/17 2/17 -1/17 }} | ||
: | : {{monzo list| 1 0 0 0 | 21/17 14/17 -7/17 0 | 42/17 -6/17 3/17 0 | 41/17 16/17 -8/17 0 }} | ||
: [[Eigenmonzo]] | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5 | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
* [[ | * 7-odd-limit [[diamond monotone]]: ~7/6 = [266.667, 272.727] (2\9 to 5\22) | ||
* [[ | * 9-odd-limit diamond monotone: ~7/6 = [270.968, 272.727] (7\31 to 5\22) | ||
* | * 7-odd-limit [[diamond tradeoff]]: ~7/6 = [266.871, 271.708] | ||
* 9-odd-limit diamond tradeoff: ~7/6 = [266.871, 272.514] | |||
[[Algebraic generator]]: Sabra3, the real root of 12''x<sup>3</sup> - 7''x'' - 48. | [[Algebraic generator]]: Sabra3, the real root of 12''x<sup>3</sup> - 7''x'' - 48. | ||
{{ | {{Optimal ET sequence|legend=1| 9, 22, 31, 53, 84, 137, 221d, 358d }} | ||
[[Badness]]: 0.020735 | [[Badness]] (Smith): 0.020735 | ||
=== 11-limit === | === 11-limit === | ||
Line 70: | Line 79: | ||
Comma list: 99/98, 121/120, 176/175 | Comma list: 99/98, 121/120, 176/175 | ||
Mapping: | Mapping: {{mapping| 1 0 3 1 3 | 0 7 -3 8 2 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~7/6 = 271.560 | |||
* POTE: ~2 = 1200.000, ~7/6 = 271.426 | |||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~7/6 = {{monzo| 2/11 0 -1/11 1/11 }} | * 11-odd-limit: ~7/6 = {{monzo| 2/11 0 -1/11 1/11 }} | ||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 14/11 0 -7/11 7/11 0 }}, {{monzo| 27/11 0 3/11 -3/11 0 }}, {{monzo| 27/11 0 -8/11 8/11 0 }}, {{monzo| 37/11 0 -2/11 2/11 0 }}] | : [{{monzo| 1 0 0 0 0 }}, {{monzo| 14/11 0 -7/11 7/11 0 }}, {{monzo| 27/11 0 3/11 -3/11 0 }}, {{monzo| 27/11 0 -8/11 8/11 0 }}, {{monzo| 37/11 0 -2/11 2/11 0 }}] | ||
: | : Unchanged-interval (eigenmonzo) basis: 2.7/5 | ||
Tuning ranges: | Tuning ranges: | ||
* | * 11-odd-limit diamond monotone: ~7/6 = [270.968, 272.727] (7\31 to 5\22) | ||
* | * 11-odd-limit diamond tradeoff: ~7/6 = [266.871, 275.659] | ||
{{Optimal ET sequence|legend=0| 9, 22, 31, 53, 84e }} | |||
Badness: 0.015231 | Badness (Smith): 0.015231 | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 93: | Line 103: | ||
Comma list: 99/98, 121/120, 176/175, 275/273 | Comma list: 99/98, 121/120, 176/175, 275/273 | ||
Mapping: | Mapping: {{mapping| 1 0 3 1 3 8 | 0 7 -3 8 2 -19 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~7/6 = 271.556 | |||
* POTE: ~2 = 1200.000, ~7/6 = 271.546 | |||
Tuning ranges: | Tuning ranges: | ||
* | * 13- and 15-odd-limit diamond monotone: ~7/6 = [270.968, 271.698] (7\31 to 12\53) | ||
* | * 13- and 15-odd-limit diamond tradeoff: ~7/6 = [266.871, 275.659] | ||
{{Optimal ET sequence|legend=0| 22, 31, 53, 84e }} | |||
Badness: 0.019718 | Badness (Smith): 0.019718 | ||
==== Blair ==== | ==== Blair ==== | ||
Line 111: | Line 122: | ||
Comma list: 65/64, 78/77, 91/90, 99/98 | Comma list: 65/64, 78/77, 91/90, 99/98 | ||
Mapping: | Mapping: {{mapping| 1 0 3 1 3 3 | 0 7 -3 8 2 3 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~7/6 = 271.747 | |||
* POTE: ~2 = 1200.000, ~7/6 = 271.301 | |||
{{Optimal ET sequence|legend=0| 9, 22, 31f }} | |||
Badness: 0.023086 | Badness (Smith): 0.023086 | ||
==== Winston ==== | ==== Winston ==== | ||
Line 124: | Line 137: | ||
Comma list: 66/65, 99/98, 105/104, 121/120 | Comma list: 66/65, 99/98, 105/104, 121/120 | ||
Mapping: | Mapping: {{mapping| 1 0 3 1 3 1 | 0 7 -3 8 2 12 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~7/6 = 271.163 | |||
* POTE: ~2 = 1200.000, ~7/6 = 271.088 | |||
Tuning ranges: | Tuning ranges: | ||
* | * 13- and 15-odd-limit diamond monotone: ~7/6 = [270.968, 272.727] (7\31 to 5\22) | ||
* | * 13- and 15-odd-limit diamond tradeoff: ~7/6 = [266.871, 281.691] | ||
{{Optimal ET sequence|legend=0| 9, 22f, 31 }} | |||
Badness: 0.019931 | Badness (Smith): 0.019931 | ||
==== Doublethink ==== | ==== Doublethink ==== | ||
Doublethink is a weak extension of orwell to the 13-limit. It splits the generator of ~7/6 into two [[13/12]]~[[14/13]]'s by tempering out their difference, [[169/168]]. Its ploidacot is alpha-tetradecacot. | |||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 99/98, 121/120, 169/168, 176/175 | Comma list: 99/98, 121/120, 169/168, 176/175 | ||
Mapping: | Mapping: {{mapping| 1 0 3 1 3 2 | 0 14 -6 16 4 15 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~13/12 = 135.811 | |||
* POTE: ~2 = 1200.000, ~13/12 = 135.723 | |||
Tuning ranges: | Tuning ranges: | ||
* | * 13- and 15-odd-limit diamond monotone: ~13/12 = [135.484, 136.364] (7\62 to 5\44) | ||
* | * 13- and 15-odd-limit diamond tradeoff: ~13/12 = [128.298, 138.573] | ||
{{Optimal ET sequence|legend=0| 9, 35bd, 44, 53, 62, 115ef }} | |||
Badness: 0.027120 | Badness (Smith): 0.027120 | ||
=== Newspeak === | === Newspeak === | ||
Line 160: | Line 177: | ||
Comma list: 225/224, 441/440, 1728/1715 | Comma list: 225/224, 441/440, 1728/1715 | ||
Mapping: | Mapping: {{mapping| 1 0 3 1 -4 | 0 7 -3 8 33 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~7/6 = 271.316 | |||
* POTE: ~2 = 1200.000, ~7/6 = 271.288 | |||
Tuning ranges: | Tuning ranges: | ||
* | * 11-odd-limit diamond monotone: ~7/6 = [270.968, 271.698] (7\31 to 12\53) | ||
* | * 11-odd-limit diamond tradeoff: ~7/6 = [266.871, 272.514] | ||
{{Optimal ET sequence|legend=0| 22e, 31, 84, 115 }} | |||
Badness: 0.031438 | Badness (Smith): 0.031438 | ||
=== Borwell === | === Borwell === | ||
Line 178: | Line 196: | ||
Comma list: 225/224, 243/242, 1728/1715 | Comma list: 225/224, 243/242, 1728/1715 | ||
Mapping: | Mapping: {{mapping| 1 7 0 9 17 | 0 -14 6 -16 -35 }} | ||
: mapping generators: ~2, ~72/55 | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.000, ~55/36 = 735.754 | |||
* POTE: ~2 = 1200.000, ~55/36 = 735.752 | |||
{{Optimal ET sequence|legend=0| 31, 75e, 106, 137 }} | |||
Badness (Smith): 0.038377 | |||
== Sabric == | |||
The sabric temperament ({{nowrap| 53 & 190 }}) tempers out the [[4375/4374|ragisma (4375/4374)]]. It is so named because it is closely related to the ''Sabra2 tuning'' (generator: 271.607278 cents). | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 2109375/2097152 | |||
{{Mapping|legend=1| 1 0 3 -11 | 0 7 -3 61 }} | |||
Badness: 0. | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.000, ~75/64 = 271.622 | |||
: [[error map]]: {{val| 0.000 -0.599 -1.180 +0.131 }} | |||
* [[POTE]]: ~2 = 1200.000, ~75/64 = 271.607 | |||
: error map: {{val| 0.000 -0.707 -1.134 -0.808 }} | |||
{{Optimal ET sequence|legend=1| 53, 137d, 190, 243, 1511bccd }} | |||
[[Badness]] (Smith): 0.088355 | |||
== Triwell == | == Triwell == | ||
The triwell temperament (31& | The triwell temperament ({{nowrap| 31 & 159 }}) slices orwell major sixth ~128/75 into three generators, nine of which give the 5th harmonic. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 1029/1024, 235298/234375 | [[Comma list]]: 1029/1024, 235298/234375 | ||
{{Mapping|legend=1| 1 7 0 1 | 0 -21 9 7 }} | |||
: mapping generators: ~2, ~448/375 | |||
[[POTE | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.000, ~448/375 = 309.456 | |||
: [[error map]]: {{val| 0.000 -0.522 -1.213 -2.637 }} | |||
* [[POTE]]: ~2 = 1200.000, ~448/375 = 309.472 | |||
: error map: {{val| 0.000 -0.872 -1.063 -2.520 }} | |||
{{ | {{Optimal ET sequence|legend=1| 31, 97, 128, 159, 190 }} | ||
[[Badness]]: 0.080575 | [[Badness]] (Smith): 0.080575 | ||
=== 11-limit === | === 11-limit === | ||
Line 208: | Line 253: | ||
Comma list: 385/384, 441/440, 456533/455625 | Comma list: 385/384, 441/440, 456533/455625 | ||
Mapping: | Mapping: {{mapping| 1 7 0 1 13 | 0 -21 9 7 -37 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~448/375 = 309.444 | |||
* POTE: ~2 = 1200.000, ~448/375 = 309.471 | |||
{{Optimal ET sequence|legend=0| 31, 97, 128, 159, 190 }} | |||
Badness: 0.029807 | Badness (Smith): 0.029807 | ||
== Quadrawell == | == Quadrawell == | ||
The ''quadrawell'' temperament (31& | The ''quadrawell'' temperament ({{nowrap| 31 & 212 }}) has an [[8/7]] generator of about 232 cents, twelve of which give the 5th harmonic. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 2401/2400, 2109375/2097152 | [[Comma list]]: 2401/2400, 2109375/2097152 | ||
{{Mapping|legend=1| 1 7 0 3 | 0 -28 12 -1 }} | |||
: mapping generators: ~2, ~8/7 | |||
[[POTE | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.000, ~8/7 = 232.082 | |||
: [[error map]]: {{val| 0.000 -0.255 -1.328 -0.908 }} | |||
* [[POTE]]: ~2 = 1200.000, ~8/7 = 232.094 | |||
: error map: {{val| 0.000 -0.574 -1.191 -0.919 }} | |||
{{ | {{Optimal ET sequence|legend=1| 31, 119, 150, 181, 212, 243, 698cd, 941cd }} | ||
[[Badness]]: 0.075754 | [[Badness]] (Smith): 0.075754 | ||
=== 11-limit === | === 11-limit === | ||
Line 238: | Line 289: | ||
Comma list: 385/384, 1375/1372, 14641/14580 | Comma list: 385/384, 1375/1372, 14641/14580 | ||
Mapping: {{mapping| 1 7 0 3 11 | 0 -28 12 -1 -39 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.000, ~8/7 = 232.065 | |||
* POTE: ~2 = 1200.000, ~8/7 = 232.083 | |||
{{Optimal ET sequence|legend=0| 31, 119, 150, 181, 212, 455ee, 667cdee }} | |||
Badness (Smith): 0.036493 | |||
== Rainwell == | |||
The ''rainwell'' temperament ({{nowrap| 31 & 265 }}) tempers out the mirkwai comma, 16875/16807 and the [[rainy comma]], 2100875/2097152. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 16875/16807, 2100875/2097152 | |||
{{Mapping|legend=1| 1 14 -3 6 | 0 -35 15 -9 }} | |||
: mapping generators: ~2, ~2625/2048 | |||
== | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.000, ~2625/2048 = 425.666 | |||
: [[error map]]: {{val| 0.000 -0.278 -1.318 0.177 }} | |||
* [[POTE]]: ~2 = 1200.000, ~2625/2048 = 425.673 | |||
: error map: {{val| 0.000 -0.526 -1.212 0.113 }} | |||
{{Optimal ET sequence|legend=1| 31, 172, 203, 234, 265, 296 }} | |||
[[Badness]] (Smith): 0.143488 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 1375/1372, 2100875/2097152 | |||
{{ | Mapping: {{mapping| 1 14 -3 6 29 | 0 -35 15 -9 -72 }} | ||
Optimal tunings: | |||
* CTE: ~2 = 1200.000, ~2625/2048 = 425.671 | |||
* POTE: ~2 = 1200.000, ~2625/2048 = 425.679 | |||
{{ | {{Optimal ET sequence|legend=0| 31, 234, 265, 296, 919bc }} | ||
Badness (Smith): 0.052774 | |||
== | == Quinwell == | ||
The | The quinwell temperament ({{nowrap| 22 & 243 }}) slices orwell minor third into five generators and tempers out the wizma, 420175/419904. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: | [[Comma list]]: 420175/419904, 2109375/2097152 | ||
{{Mapping|legend=1| 1 0 3 0 | 0 35 -15 62 }} | |||
: mapping generators: ~2, ~405/392 | |||
[[POTE | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.000, ~405/392 = 54.335 | |||
: [[error map]]: {{val| 0.000 -0.233 -1.338 -0.061 }} | |||
* [[POTE]]: ~2 = 1200.000, ~405/392 = 54.324 | |||
: error map: {{val| 0.000 -0.604 -1.178 -0.718 }} | |||
{{ | {{Optimal ET sequence|legend=1| 22, …, 199d, 221, 243, 751c, 994cd, 1237bccd, 1480bccd }} | ||
Badness: 0. | [[Badness]] (Smith): 0.168897 | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: 540/539, | Comma list: 540/539, 4375/4356, 2109375/2097152 | ||
Mapping: {{mapping| 1 0 3 0 5 | 0 35 -15 62 -34 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.000, ~33/32 = 54.338 | |||
* POTE: ~2 = 1200.000, ~33/32 = 54.334 | |||
{{Optimal ET sequence|legend=0| 22, 221, 243, 265 }} | |||
Badness (Smith): 0.097202 | |||
=== Quinbetter === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 385/384, 24057/24010, 43923/43750 | |||
Mapping: | Mapping: {{mapping| 1 0 3 0 4 | 0 35 -15 62 -12 }} | ||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.000, ~405/392 = 54.332 | |||
* POTE: ~2 = 1200.000, ~405/392 = 54.316 | |||
{{Optimal ET sequence|legend=0| 22, …, 199d, 221e, 243e, 707bcdeee }} | |||
Badness: 0. | Badness (Smith): 0.078657 | ||
[[Category: | [[Category:Temperament families]] | ||
[[Category: | [[Category:Pages with mostly numerical content]] | ||
[[Category:Semicomma family| ]] <!-- main article --> | [[Category:Semicomma family| ]] <!-- main article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] | ||
[[Category:Orson]] | [[Category:Orson]] | ||
[[Category:Orwell]] | [[Category:Orwell]] |