|
|
(5 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| '''[[EDF|Division of the just perfect fifth]] into 24 equal parts''' (24EDF) is related to [[41edo|41 edo]], but with the 3/2 rather than the 2/1 being just. The octave is about 0.8269 cents compressed and the step size is about 29.2481 cents. It is consistent to the [[15-odd-limit|16-integer-limit]].
| | {{Infobox ET}} |
| | {{ED intro}} |
|
| |
|
| Lookalikes: [[41edo]], [[65edt]], [[95ed5]]
| | == Theory == |
| | 24edf is related to [[41edo]], but with the 3/2 rather than the [[2/1]] being just. The octave is about 0.8269 cents compressed. Like 41edo, 24edf is [[consistent]] to the [[integer limit|16-integer-limit]]. |
| | |
| | === Harmonics === |
| | {{Harmonics in equal|24|3|2|intervals=integer}} |
| | {{Harmonics in equal|24|3|2|intervals=integer|columns=12|start=12|collapsed=true|Approximation of harmonics in 65edt (continued)}} |
| | |
| | === Subsets and supersets === |
| | 24edt is the 6th [[highly composite equal division|highly composite edt]]. Its nontrivial subsets are {{EDs|equave=t| 2, 3, 4, 6, 8, and 12 }}. |
|
| |
|
| == Intervals == | | == Intervals == |
| {| class="wikitable" | | {| class="wikitable center-1 right-2" |
| | |+ Intervals of 24edf |
| |- | | |- |
| ! | | | ! # |
| ! |Cents Value | | ! Cents |
| ! |Approximate Ratios in the [[11-limit]] | | ! Approximate ratios |
| |- | | |- |
| | style="text-align:center;" |0
| | | 0 |
| | style="text-align:center;" |0.00
| | | 0.0 |
| | |[[1/1]]
| | | [[1/1]] |
| |- | | |- |
| | style="text-align:center;" |1
| | | 1 |
| | style="text-align:center;" |29.2481
| | | 29.2 |
| | |[[81/80]] | | | [[49/48]], [[50/49]], [[64/63]], [[81/80]] |
| |- | | |- |
| | style="text-align:center;" |2
| | | 2 |
| | style="text-align:center;" |58.49625
| | | 58.5 |
| | |[[25/24]], [[28/27]], [[33/32]]
| | | [[25/24]], [[28/27]], [[33/32]], [[36/35]] |
| |- | | |- |
| | style="text-align:center;" |3
| | | 3 |
| | style="text-align:center;" |87.7444
| | | 87.7 |
| | |[[21/20]], [[22/21]] | | | [[19/18]], [[20/19]], [[21/20]], [[22/21]] |
| |- | | |- |
| | style="text-align:center;" |4
| | | 4 |
| | style="text-align:center;" |116.9925 | | | 117.0 |
| | |[[16/15]], [[15/14]]
| | | [[14/13]], [[15/14]], [[16/15]] |
| |- | | |- |
| | style="text-align:center;" |5
| | | 5 |
| | style="text-align:center;" |146.2406
| | | 146.2 |
| | |[[12/11]]
| | | [[12/11]], [[13/12]] |
| |- | | |- |
| | style="text-align:center;" |6
| | | 6 |
| | style="text-align:center;" |175.48875
| | | 175.5 |
| | |[[10/9]], [[11/10]]
| | | [[10/9]], [[11/10]], [[21/19]] |
| |- | | |- |
| | style="text-align:center;" |7
| | | 7 |
| | style="text-align:center;" |204.7369
| | | 204.7 |
| | |[[9/8]]
| | | [[9/8]] |
| |- | | |- |
| | style="text-align:center;" |8
| | | 8 |
| | style="text-align:center;" |233.985 | | | 234.0 |
| | |[[8/7]]
| | | [[8/7]], [[15/13]] |
| |- | | |- |
| | style="text-align:center;" |9
| | | 9 |
| | style="text-align:center;" |263.2331
| | | 263.2 |
| | |[[7/6]], [[32/25]]
| | | [[7/6]], [[22/19]] |
| |- | | |- |
| | style="text-align:center;" |10
| | | 10 |
| | style="text-align:center;" |292.48125
| | | 292.5 |
| | |[[32/27]] | | | [[13/11]], [[19/16]], [[32/27]] |
| |- | | |- |
| | style="text-align:center;" |11
| | | 11 |
| | style="text-align:center;" |321.7293
| | | 321.7 |
| | |[[6/5]]
| | | [[6/5]] |
| |- | | |- |
| | style="text-align:center;" |12
| | | 12 |
| | style="text-align:center;" |350.9775 | | | 351.0 |
| | |[[11/9]],[[27/22]]
| | | [[11/9]], [[16/13]] |
| |- | | |- |
| | style="text-align:center;" |13
| | | 13 |
| | style="text-align:center;" |380.2256
| | | 380.2 |
| | |[[5/4]]
| | | [[5/4]], [[26/21]] |
| |- | | |- |
| | style="text-align:center;" |14
| | | 14 |
| | style="text-align:center;" |409.47375
| | | 409.5 |
| | |[[14/11]], [[81/64]]
| | | [[14/11]], [[19/15]], [[24/19]] |
| |- | | |- |
| | style="text-align:center;" |15
| | | 15 |
| | style="text-align:center;" |438.7219
| | | 438.7 |
| | |[[9/7]]
| | | [[9/7]], [[32/25]] |
| |- | | |- |
| | style="text-align:center;" |16
| | | 16 |
| | style="text-align:center;" |467.97 | | | 468.0 |
| | |[[21/16]]
| | | [[21/16]], [[13/10]] |
| |- | | |- |
| | style="text-align:center;" |17
| | | 17 |
| | style="text-align:center;" |497.2181
| | | 497.2 |
| | |[[4/3]]
| | | [[4/3]] |
| |- | | |- |
| | style="text-align:center;" |18
| | | 18 |
| | style="text-align:center;" |526.46625
| | | 526.5 |
| | |[[15/11]], [[27/20]]
| | | [[15/11]], [[19/14]], [[27/20]] |
| |- | | |- |
| | style="text-align:center;" |19
| | | 19 |
| | style="text-align:center;" |556.7144
| | | 556.7 |
| | |[[11/8]]
| | | [[11/8]], [[18/13]], [[26/19]] |
| |- | | |- |
| | style="text-align:center;" |20
| | | 20 |
| | style="text-align:center;" |584.9625 | | | 585.0 |
| | |[[7/5]]
| | | [[7/5]], [[45/32]] |
| |- | | |- |
| | style="text-align:center;" |21
| | | 21 |
| | style="text-align:center;" |614.2106
| | | 614.2 |
| | |[[10/7]]
| | | [[10/7]], [[64/45]] |
| |- | | |- |
| | style="text-align:center;" |22
| | | 22 |
| | style="text-align:center;" |643.45875
| | | 643.5 |
| | |[[16/11]] | | | [[13/9]], [[16/11]], [[19/13]] |
| |- | | |- |
| | style="text-align:center;" |23
| | | 23 |
| | style="text-align:center;" |671.7069
| | | 671.7 |
| | |[[22/15]], [[40/27]]
| | | [[22/15]], [[28/19]], [[40/27]] |
| |- | | |- |
| | style="text-align:center;" |24
| | | 24 |
| | style="text-align:center;" |701.955 | | | 702.0 |
| | |[[3/2]]
| | | [[3/2]] |
| |- | | |- |
| | style="text-align:center;" |25
| | | 25 |
| | style="text-align:center;" |731.2031
| | | 731.2 |
| | |[[32/21]] | | | [[20/13]], [[32/21]] |
| |- | | |- |
| | style="text-align:center;" |26
| | | 26 |
| | style="text-align:center;" |760.45125
| | | 760.5 |
| | |[[14/9]], [[25/16]]
| | | [[14/9]], [[25/16]] |
| |- | | |- |
| | style="text-align:center;" |27
| | | 27 |
| | style="text-align:center;" |789.6994
| | | 789.7 |
| | |[[11/7]], [[128/81]]
| | | [[11/7]], [[19/12]], [[30/19]] |
| |- | | |- |
| | style="text-align:center;" |28
| | | 28 |
| | style="text-align:center;" |818.9475
| | | 818.9 |
| | |[[8/5]]
| | | [[8/5]] |
| |- | | |- |
| | style="text-align:center;" |29
| | | 29 |
| | style="text-align:center;" |848.1956
| | | 848.2 |
| | |[[18/11]], [[44/27]]
| | | [[13/8]], [[18/11]] |
| |- | | |- |
| | style="text-align:center;" |30
| | | 30 |
| | style="text-align:center;" |877.44375
| | | 877.4 |
| | |[[5/3]]
| | | [[5/3]] |
| |- | | |- |
| | style="text-align:center;" |31
| | | 31 |
| | style="text-align:center;" |906.6919
| | | 906.7 |
| | |[[27/16]] | | | [[22/13]], [[27/16]], [[32/19]] |
| |- | | |- |
| | style="text-align:center;" |32
| | | 32 |
| | style="text-align:center;" |935.94
| | | 935.9 |
| | |[[12/7]]
| | | [[12/7]], [[19/11]] |
| |- | | |- |
| | style="text-align:center;" |33
| | | 33 |
| | style="text-align:center;" |965.1881
| | | 965.2 |
| | |[[7/4]]
| | | [[7/4]], [[26/15]] |
| |- | | |- |
| | style="text-align:center;" |34
| | | 34 |
| | style="text-align:center;" |994.43625
| | | 994.4 |
| | |[[16/9]]
| | | [[16/9]] |
| |- | | |- |
| | style="text-align:center;" |35
| | | 35 |
| | style="text-align:center;" |1023.6844
| | | 1023.7 |
| | |[[9/5]], [[20/11]]
| | | [[9/5]] |
| |- | | |- |
| | style="text-align:center;" |36
| | | 36 |
| | style="text-align:center;" |1052.9325
| | | 1052.9 |
| | |[[11/6]]
| | | [[11/6]] |
| |- | | |- |
| | style="text-align:center;" |37
| | | 37 |
| | style="text-align:center;" |1082.1806
| | | 1082.2 |
| | |[[15/8]] | | | [[13/7]], [[15/8]] |
| |- | | |- |
| | style="text-align:center;" |38
| | | 38 |
| | style="text-align:center;" |1111.42875
| | | 1111.4 |
| | |[[40/21]], [[21/11]]
| | | [[19/10]], [[21/11]] |
| |- | | |- |
| | style="text-align:center;" |39
| | | 39 |
| | style="text-align:center;" |1140.6769
| | | 1140.7 |
| | |[[48/25]], [[27/14]], [[64/33]] | | | [[27/14]], [[35/18]] |
| |- | | |- |
| | style="text-align:center;" |40
| | | 40 |
| | style="text-align:center;" |1169.925
| | | 1169.9 |
| | |[[160/81]] | | | [[49/25]], [[56/28]], [[63/32]] |
| |- | | |- |
| | style="text-align:center;" |41
| | | 41 |
| | style="text-align:center;" |1199.1731
| | | 1199.2 |
| | |2/1
| | | 2/1 |
| |- | | |- |
| |42 | | | 42 |
| |1228.42125 | | | 1228.4 |
| |81/40 | | | [[45/22]], [[49/24]], [[55/27]], [[81/40]] |
| |- | | |- |
| |43 | | | 43 |
| |1257.6694 | | | 1257.7 |
| |25/12, 56/27, 33/16 | | | [[25/12]], [[33/16]] |
| |- | | |- |
| |44 | | | 44 |
| |1286.9175 | | | 1286.9 |
| |21/10, 44/21 | | | [[19/9]], [[21/10]] |
| |- | | |- |
| |45 | | | 45 |
| |1316.1656 | | | 1316.2 |
| |32/15, 15/7 | | | [[15/7]] |
| |- | | |- |
| |46 | | | 46 |
| |1345.41375 | | | 1345.4 |
| |24/11 | | | [[13/6]] |
| |- | | |- |
| |47 | | | 47 |
| |1374.6619 | | | 1374.7 |
| |20/9, 11/5 | | | [[11/5]] |
| |- | | |- |
| |48 | | | 48 |
| |1403.91 | | | 1403.9 |
| |9/4 | | | [[9/4]] |
| |} | | |} |
| [[Category:Edf]] | | |
| [[Category:Edonoi]] | | == See also == |
| | * [[41edo]] – relative edo |
| | * [[65edt]] – relative edt |
| | * [[95ed5]] – relative ed5 |
| | * [[106ed6]] – relative ed6 |
| | * [[147ed12]] – relative ed12 |
| | * [[361ed448]] – close to the zeta-optimized tuning for 41edo |
| | |
| | [[Category:41edo]] |