26th-octave temperaments: Difference between revisions

TallKite (talk | contribs)
m TallKite moved page 11-limit comma temperaments to 26th-octave temperaments: Not all temperaments on this page are 11-limit, and most 11-limit temperaments are not on this page
No edit summary
 
(26 intermediate revisions by 8 users not shown)
Line 1: Line 1:
__FORCETOC__
{{Technical data page}}
=Bosonic=
{{Infobox fractional-octave|26}}
Commas: 321489/320000, 589824/588245
All temperaments on this page have a period that is [[Fractional-octave temperaments|1/26th of an octave]]. However, the {{monzo| -41 26 }} comma is not tempered out. Thus the 3/2 is not that of [[26edo]]. However, 7/4 is, as is 11/8 in the Bosonic temperaments.


POTE generator: ~3/2 = 701.250
26edo is very accurate for 7th harmonic, the [[26-7-comma]] ({{monzo|73 0 0 -26}}, the amount by which 26 septimal whole tones ([[8/7]]) exceed 5 octaves) is tempered out by 26-fold multiple EDOs up to 1456 (such as [[26edo|26]], [[130edo|130]], [[286edo|286]] or [[546edo|546]] EDO).


Map: [<26 0 -22 73|, <0 1 2 0|]
== Bosonic ==
{{See also| High badness temperaments #Tridecatonic }}


Wedgie: <<26 52 0 22 -73 -146||
Subgroup: 2.3.5.7


EDOs: 26, 130, 546, 676, 806c
[[Comma list]]: 321489/320000, 589824/588245


Badness: 0.1558
[[Mapping]]: [{{val| 26 0 -22 73 }}, {{val| 0 1 2 0 }}]


==11-limit==
Mapping generators: ~36/35, ~3
Commas: 441/440, 8019/8000, 65536/65219
 
[[POTE generator]]: ~3/2 = 701.250
 
{{Optimal ET sequence|legend=1| 26, 130, 546, 676, 806c }}
 
[[Badness]]: 0.155827
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 8019/8000, 65536/65219
 
Mapping: [{{val| 26 0 -22 73 90 }}, {{val| 0 1 2 0 0 }}]


POTE generator: ~3/2 = 701.559
POTE generator: ~3/2 = 701.559


Map: [<26 0 -22 73 90|, <0 1 2 0 0|]
{{Optimal ET sequence|legend=1| 26, 104c, 130 }}
 
Badness: 0.065219


EDOs: 26, 104c, 130
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Badness: 0.0652
Comma list: 351/350, 364/363, 441/440, 15379/15360


==13-limit==
Mapping: [{{val| 26 0 -22 73 90 55 }}, {{val| 0 1 2 0 0 1 }}]
Commas: 351/350, 364/363, 441/440, 15379/15360


POTE generator: ~3/2 = 701.546
POTE generator: ~3/2 = 701.546


Map: [<26 0 -22 73 90 55|, <0 1 2 0 0 1|]
{{Optimal ET sequence|legend=1| 26, 104c, 130 }}


EDOs: 26, 104c, 130
Badness: 0.032946


Badness: 0.0329
=== Fermionic ===
Subgroup: 2.3.5.7.11


=Fermionic=
Comma list: 540/539, 78408/78125, 177147/176000
Commas: 540/539, 78408/78125, 177147/176000
 
Mapping: [{{val| 26 0 -22 73 -116 }}, {{val| 0 1 2 0 5 }}]


POTE generator: ~3/2 = 701.077
POTE generator: ~3/2 = 701.077


Map: [<26 0 -22 73 -116|, <0 1 2 0 5|]
{{Optimal ET sequence|legend=1| 130, 286, 416, 546, 1508bcd }}


EDOs: 130, 286, 416, 546, 1508bcd
Badness: 0.090642


Badness: 0.0906
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


==13-limit==
Comma list: 351/350, 540/539, 40656/40625, 142884/142805
Commas: 351/350, 540/539, 40656/40625, 142884/142805
 
Mapping: [{{val| 26 0 -22 73 -116 55 }}, {{val| 0 1 2 0 5 1 }}]


POTE generator: ~3/2 = 701.038
POTE generator: ~3/2 = 701.038


Map: [<26 0 -22 73 -116 55|, <0 1 2 0 5 1|]
{{Optimal ET sequence|legend=1| 130, 286, 416, 546, 962bf }}
 
Badness: 0.043581
 
== Iron ==
''Iron'' is named after the 26th element.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2460375/2458624, 2147483648/2144153025
 
[[Mapping]]: [{{val|26 26 106 73}}, {{val|0 1 -3 0}}]
 
[[Mapping]] [[generators]]: ~17280/16807 = 1\26, ~3/2 = 702.017
 
[[Optimal tuning]] ([[CTE]]):  ~3/2 = 702.017
 
{{Optimal ET sequence|legend=1|130, 364, 494, 624}}, ...
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 9801/9800, 131072/130977, 759375/758912
 
Mapping: [{{val|26 26 106 73 166}}, {{val|0 1 -3 0 -5}}]
 
Mapping generators: ~77/75 = 1\26, ~3/2 = 702.017
 
Optimal tuning (CTE):  ~3/2 = 702.017
 
{{Optimal ET sequence|legend=1|130, 364, 494, 624}}, ...
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1716/1715, 2080/2079, 4096/4095, 91125/91091
 
Mapping: [{{val|26 26 106 73 166 81}}], {{val|0 1 -3 0 -5 1}}]
 
Mapping generators: ~77/75 = 1\26, ~3/2 = 702.018
 
Optimal tuning (CTE):  ~3/2 = 702.018
 
{{Optimal ET sequence|legend=1|130, 364, 494, 624}}, ...


EDOs: 130, 286, 416, 546, 962bf
{{Navbox fractional-octave}}


Badness: 0.0436
[[Category:26edo]]