26edo: Difference between revisions

Theory: restore some info
Theory: rework for more beginner-friendiness and fix the tone on HE
Line 9: Line 9:


== Theory ==
== Theory ==
26edo tempers out [[81/80]] in the [[5-limit]], making it a [[meantone]] tuning with a very flat fifth (0.088957¢ flat of the [[4/9-comma meantone]] fifth).
26edo has a [[3/2|perfect fifth]] of about 692 cents and [[tempering out|tempers out]] [[81/80]] in the [[5-limit]], making it a very flat [[meantone]] tuning (0.088957{{c}} flat of the [[4/9-comma meantone]] fifth) with a very soft [[5L 2s|diatonic scale]].  


In the [[7-limit]], it tempers out 50/49, 525/512, and 875/864, and [[support]]s temperaments like [[injera]], [[flattone]], [[lemba]], and [[doublewide]]. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13-odd-limit]] [[consistent]]ly. 26edo has a very good approximation of the harmonic seventh ([[7/4]]), as it is the denominator of a convergent to log<sub>2</sub>7.
In the [[7-limit]], it tempers out [[50/49]], [[525/512]], and [[875/864]], and [[support]]s temperaments like [[injera]], [[flattone]], [[lemba]], and [[doublewide]]. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13-odd-limit]] [[consistent]]ly. 26edo has a very good approximation of the harmonic seventh ([[7/4]]), as it is the denominator of a convergent to log<sub>2</sub>7.


26edo's minor sixth (1.6158) is very close to {{nowrap|''φ'' ≈ 1.6180}} (i.e. the golden ratio).
26edo's minor sixth (1.6158) is very close to {{nowrap|''φ'' ≈ 1.6180}} (i.e. the golden ratio).
Line 25: Line 25:
# It also has a pretty good 17th harmonic and tempers out the comma 459:448, thus three fourths give a 17:14 and four fifths give a 21:17; "mushtone". Mushtone is high in badness, but 26edo does it pretty well (and [[33edo]] even better). Because 26edo also tempers out 85:84, the septendecimal major and minor thirds are equivalent to their pental counterparts, making mushtone the same as flattone.
# It also has a pretty good 17th harmonic and tempers out the comma 459:448, thus three fourths give a 17:14 and four fifths give a 21:17; "mushtone". Mushtone is high in badness, but 26edo does it pretty well (and [[33edo]] even better). Because 26edo also tempers out 85:84, the septendecimal major and minor thirds are equivalent to their pental counterparts, making mushtone the same as flattone.


Its step of 46.2{{c}}, as well as the octave-inverted and octave-equivalent versions of it, holds the distinction for having around the highest [[harmonic entropy]] possible. This is because the harmonic entropy model is usually tuned to reflect the common perception of quarter-tones as being the most dissonant intervals. This property is shared with all edos between around 20 and 30. Intervals smaller than this tend to be perceived as unison and are more consonant as a result; intervals larger than this have less "tension" and thus are also more consonant.
Its step of 46.2{{c}}, as well as the octave-inverted and octave-equivalent versions of it, holds the distinction for having around the highest [[harmonic entropy]] possible. In other words, there is a common perception of quartertones as being the most dissonant intervals. This property is shared with all edos between around 20 and 30. Intervals smaller than this tend to be perceived as unison and are more consonant as a result; intervals larger than this have less "tension" and thus are also more consonant.


Thanks to its sevenths, 26edo is an ideal tuning for its size for [[metallic harmony]].
Thanks to its sevenths, 26edo is an ideal tuning for its size for [[metallic harmony]].