130edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 238828107 - Original comment: ** |
Add lumatone mapping link. |
||
(71 intermediate revisions by 22 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
130edo is a [[zeta peak edo]], a [[zeta peak integer edo]], and a [[zeta integral edo]] but not a gap edo. It is [[distinctly consistent]] to the [[15-odd-limit]] and is the first [[trivial temperament|nontrivial edo]] to be consistent in the 14-[[odd prime sum limit|odd-prime-sum-limit]]. As an equal temperament, it [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[19683/19600]] in the 7-limit; [[243/242]], [[441/440]], [[540/539]], and [[4000/3993]] in the 11-limit; and [[351/350]], [[364/363]], [[676/675]], [[729/728]], [[1001/1000]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]] in the 13-limit. It can be used to tune a variety of temperaments, including [[hemiwürschmidt]], [[sesquiquartififths]], [[harry]] and [[hemischis]]. It also can be used to tune the [[rank-3 temperament]] [[jove]], tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and [[595/594]] for the 17-limit. It gives the [[optimal patent val]] for 11-limit [[hemiwürschmidt]] and [[Schismatic family #Sesquiquartififths|sesquart]] and 13-limit [[harry]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|130|columns=9}} | |||
{{Harmonics in equal|130|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 130edo (continued)}} | |||
13 | === Subsets and supersets === | ||
Since 130 factors into 2 × 5 × 13, 130edo has subset edos {{EDOs| 2, 5, 10, 13, 26, and 65 }}. | |||
[[260edo]], which divides the edostep in two, provides a strong correction for the 29th harmonic. | |||
== | == Intervals == | ||
{| class="wikitable center-all right-2 left-3" | |||
|- | |||
! Degree | |||
! Cents | |||
7- | ! Approximate ratios | ||
|- | |||
11 | | 0 | ||
| 0.00 | |||
13 | | 1/1 | ||
|- | |||
17- | | 1 | ||
| 9.23 | |||
| ''126/125'', 144/143, 169/168, 176/175, 196/195, 225/224 | |||
|- | |||
| 2 | |||
| 18.46 | |||
| 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120 | |||
|- | |||
| 3 | |||
| 27.69 | |||
| 56/55, 64/63, 65/64, 66/65 | |||
|- | |||
| 4 | |||
| 36.92 | |||
| 45/44, 49/48, 50/49, ''55/54'' | |||
|- | |||
| 5 | |||
| 46.15 | |||
| 36/35, 40/39 | |||
|- | |||
| 6 | |||
| 55.38 | |||
| 33/32 | |||
|- | |||
| 7 | |||
| 64.62 | |||
| 27/26, 28/27 | |||
|- | |||
| 8 | |||
| 73.85 | |||
| 25/24, 26/25 | |||
|- | |||
| 9 | |||
| 83.08 | |||
| 21/20, 22/21 | |||
|- | |||
| 10 | |||
| 92.31 | |||
| 135/128 | |||
|- | |||
| 11 | |||
| 101.54 | |||
| 35/33 | |||
|- | |||
| 12 | |||
| 110.77 | |||
| 16/15 | |||
|- | |||
| 13 | |||
| 120.00 | |||
| 15/14 | |||
|- | |||
| 14 | |||
| 129.23 | |||
| 14/13 | |||
|- | |||
| 15 | |||
| 138.46 | |||
| 13/12 | |||
|- | |||
| 16 | |||
| 147.69 | |||
| 12/11 | |||
|- | |||
| 17 | |||
| 156.92 | |||
| 35/32 | |||
|- | |||
| 18 | |||
| 166.15 | |||
| 11/10 | |||
|- | |||
| 19 | |||
| 175.38 | |||
| 72/65 | |||
|- | |||
| 20 | |||
| 184.62 | |||
| 10/9 | |||
|- | |||
| 21 | |||
| 193.85 | |||
| 28/25 | |||
|- | |||
| 22 | |||
| 203.08 | |||
| 9/8 | |||
|- | |||
| 23 | |||
| 212.31 | |||
| 44/39 | |||
|- | |||
| 24 | |||
| 221.54 | |||
| 25/22 | |||
|- | |||
| 25 | |||
| 230.77 | |||
| 8/7 | |||
|- | |||
| 26 | |||
| 240.00 | |||
| 55/48 | |||
|- | |||
| 27 | |||
| 249.23 | |||
| 15/13 | |||
|- | |||
| 28 | |||
| 258.46 | |||
| 64/55 | |||
|- | |||
| 29 | |||
| 267.69 | |||
| 7/6 | |||
|- | |||
| 30 | |||
| 276.92 | |||
| 75/64 | |||
|- | |||
| 31 | |||
| 286.15 | |||
| 13/11 | |||
|- | |||
| 32 | |||
| 295.38 | |||
| 32/27 | |||
|- | |||
| 33 | |||
| 304.62 | |||
| 25/21 | |||
|- | |||
| 34 | |||
| 313.85 | |||
| 6/5 | |||
|- | |||
| 35 | |||
| 323.08 | |||
| 65/54 | |||
|- | |||
| 36 | |||
| 332.31 | |||
| 40/33 | |||
|- | |||
| 37 | |||
| 341.54 | |||
| 39/32 | |||
|- | |||
| 38 | |||
| 350.77 | |||
| 11/9, 27/22 | |||
|- | |||
| 39 | |||
| 360.00 | |||
| 16/13 | |||
|- | |||
| 40 | |||
| 369.23 | |||
| 26/21 | |||
|- | |||
| 41 | |||
| 378.46 | |||
| 56/45 | |||
|- | |||
| 42 | |||
| 387.69 | |||
| 5/4 | |||
|- | |||
| 43 | |||
| 396.92 | |||
| 44/35 | |||
|- | |||
| 44 | |||
| 406.15 | |||
| 81/64 | |||
|- | |||
| 45 | |||
| 415.38 | |||
| 14/11 | |||
|- | |||
| 46 | |||
| 424.62 | |||
| 32/25 | |||
|- | |||
| 47 | |||
| 433.85 | |||
| 9/7 | |||
|- | |||
| 48 | |||
| 443.08 | |||
| 84/65, 128/99 | |||
|- | |||
| 49 | |||
| 452.31 | |||
| 13/10 | |||
|- | |||
| 50 | |||
| 461.54 | |||
| 64/49, ''72/55'' | |||
|- | |||
| 51 | |||
| 470.77 | |||
| 21/16 | |||
|- | |||
| 52 | |||
| 480.00 | |||
| 33/25 | |||
|- | |||
| 53 | |||
| 489.23 | |||
| 65/49 | |||
|- | |||
| 54 | |||
| 498.46 | |||
| 4/3 | |||
|- | |||
| 55 | |||
| 507.69 | |||
| 75/56 | |||
|- | |||
| 56 | |||
| 516.92 | |||
| 27/20 | |||
|- | |||
| 57 | |||
| 526.15 | |||
| 65/48 | |||
|- | |||
| 58 | |||
| 535.38 | |||
| 15/11 | |||
|- | |||
| 59 | |||
| 544.62 | |||
| 48/35 | |||
|- | |||
| 60 | |||
| 553.85 | |||
| 11/8 | |||
|- | |||
| 61 | |||
| 563.08 | |||
| 18/13 | |||
|- | |||
| 62 | |||
| 572.31 | |||
| 25/18 | |||
|- | |||
| 63 | |||
| 581.54 | |||
| 7/5 | |||
|- | |||
| 64 | |||
| 590.77 | |||
| 45/32 | |||
|- | |||
| 65 | |||
| 600.00 | |||
| 99/70, 140/99 | |||
|- | |||
|… | |||
|… | |||
|… | |||
|} | |||
== Notation == | |||
=== Sagittal notation === | |||
{| class="wikitable center-all" | |||
! Steps | |||
| 0 | |||
| 1 | |||
| 2 | |||
| 3 | |||
| 4 | |||
| 5 | |||
| 6 | |||
| 7 | |||
| 8 | |||
| 9 | |||
| 10 | |||
| 11 | |||
| 12 | |||
|- | |||
! Symbol | |||
| [[File:Sagittal natural.png]] | |||
| [[File:Sagittal nai.png]] | |||
| [[File:Sagittal pai.png]] | |||
| [[File:Sagittal tai.png]] | |||
| [[File:Sagittal phai.png]] | |||
| [[File:Sagittal patai.png]] | |||
| [[File:Sagittal pakai.png]] | |||
| [[File:Sagittal jakai.png]] | |||
| [[File:Sagittal sharp phao.png]] | |||
| [[File:Sagittal sharp tao.png]] | |||
| [[File:Sagittal sharp pao.png]] | |||
| [[File:Sagittal sharp nao.png]] | |||
| [[File:Sagittal sharp.png]] | |||
|} | |||
== Approximation to JI == | |||
=== Zeta peak index === | |||
{{ZPI | |||
| zpi = 796 | |||
| steps = 130.003910460506 | |||
| step size = 9.23049157328654 | |||
| tempered height = 10.355108 | |||
| pure height = 10.339572 | |||
| integral = 1.634018 | |||
| gap = 19.594551 | |||
| octave = 1199.96390452725 | |||
| consistent = 16 | |||
| distinct = 16 | |||
}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 3136/3125, 19683/19600 | |||
| {{Mapping| 130 206 302 365 }} | |||
| −0.119 | |||
| 0.311 | |||
| 3.37 | |||
|- | |||
| 2.3.5.7.11 | |||
| 243/242, 441/440, 3136/3125, 4000/3993 | |||
| {{Mapping| 130 206 302 365 450 }} | |||
| −0.241 | |||
| 0.370 | |||
| 4.02 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 243/242, 351/350, 364/363, 441/440, 3136/3125 | |||
| {{Mapping| 130 206 302 365 450 481 }} | |||
| −0.177 | |||
| 0.367 | |||
| 3.98 | |||
|} | |||
=== Rank-2 temperaments === | |||
Note: temperaments supported by [[65edo|65et]] are not included. | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |||
| 1 | |||
| 3\130 | |||
| 27.69 | |||
| 64/63 | |||
| [[Arch]] | |||
|- | |||
| 1 | |||
| 7\130 | |||
| 64.62 | |||
| 26/25 | |||
| [[Rectified hebrew]] | |||
|- | |||
| 1 | |||
| 9\130 | |||
| 83.08 | |||
| 21/20 | |||
| [[Sextilifourths]] | |||
|- | |||
| 1 | |||
| 19\130 | |||
| 175.38 | |||
| 72/65 | |||
| [[Sesquiquartififths]] / [[sesquart]] | |||
|- | |||
| 1 | |||
| 21\130 | |||
| 193.85 | |||
| 28/25 | |||
| [[Hemiwürschmidt]] | |||
|- | |||
| 1 | |||
| 27\130 | |||
| 249.23 | |||
| 15/13 | |||
| [[Hemischis]] | |||
|- | |||
| 1 | |||
| 41\130 | |||
| 378.46 | |||
| 56/45 | |||
| [[Subpental]] | |||
|- | |||
| 2 | |||
| 6\130 | |||
| 55.38 | |||
| 33/32 | |||
| [[Septisuperfourth]] | |||
|- | |||
| 2 | |||
| 9\130 | |||
| 83.08 | |||
| 21/20 | |||
| [[Harry]] | |||
|- | |||
| 2 | |||
| 17\130 | |||
| 156.92 | |||
| 35/32 | |||
| [[Bison]] | |||
|- | |||
| 2 | |||
| 19\130 | |||
| 175.38 | |||
| 448/405 | |||
| [[Bisesqui]] | |||
|- | |||
| 2 | |||
| 54\130<br>(11\130) | |||
| 498.46<br>(101.54) | |||
| 4/3<br>(35/33) | |||
| [[Bischismic]] | |||
|- | |||
| 5 | |||
| 27\130<br>(1\130) | |||
| 249.23<br>(9.23) | |||
| 81/70<br>(176/175) | |||
| [[Hemiquintile]] | |||
|- | |||
| 10 | |||
| 27\130<br>(1\130) | |||
| 249.23<br>(9.23) | |||
| 15/13<br>(176/175) | |||
| [[Decoid]] | |||
|- | |||
| 10 | |||
| 54\130<br>(2\130) | |||
| 498.46<br>(18.46) | |||
| 4/3<br>(81/80) | |||
| [[Decile]] | |||
|- | |||
| 26 | |||
| 54\130<br>(1\130) | |||
| 498.46<br>(9.23) | |||
| 4/3<br>(225/224) | |||
| [[Bosonic]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | |||
{| class="wikitable" | |||
|+ style="font-size: 105%;" | 14-tone temperament of "Narrative Wars"<br />as an example of using 130edo: | |||
|- | |||
! Step | |||
! Cents | |||
! Distance to the nearest JI interval<br />(selected ratios) | |||
|- | |||
| 13 (13/130) | |||
| 120.000 | |||
| [[15/14]] (+0.557{{c}}) | |||
|- | |||
| 7 (20/130) | |||
| 184.615 | |||
| [[10/9]] (+2.211{{c}}) | |||
|- | |||
| 9 (29/130) | |||
| 267.692 | |||
| [[7/6]] (+0,821{{c}}) | |||
|- | |||
| 9 (38/130) | |||
| 350.769 | |||
| [[11/9]] (+3.361{{c}}) | |||
|- | |||
| 9 (47/130) | |||
| 433.846 | |||
| [[9/7]] (−1.238{{c}}) | |||
|- | |||
| 7 (54/130) | |||
| 498.462 | |||
| [[4/3]] (+0.417{{c}}) | |||
|- | |||
| 13 (67/130) | |||
| 618.462 | |||
| [[10/7]] (+0.974{{c}}) | |||
|- | |||
| 9 (76/130) | |||
| 701.538 | |||
| [[3/2]] (−0.417{{c}}) | |||
|- | |||
| 7 (83/130) | |||
| 766.154 | |||
| [[14/9]] (+1.238{{c}}) | |||
|- | |||
| 13 (96/130) | |||
| 886.154 | |||
| [[5/3]] (+1.795{{c}}) | |||
|- | |||
| 5 (101/130) | |||
| 932.308 | |||
| [[12/7]] (−0.821{{c}}) | |||
|- | |||
| 13 (114/130) | |||
| 1052.308 | |||
| [[11/6]] (+2.945{{c}}) | |||
|- | |||
| 7 (121/130) | |||
| 1116.923 | |||
| [[21/11]] (−2.540{{c}}) | |||
|- | |||
| 9 (130/130) | |||
| 1200.000 | |||
| [[Octave]] (2/1, 0{{c}}) | |||
|} | |||
== Instruments == | |||
[[Lumatone mapping for 130edo]] | |||
== Music == | |||
{{Catrel|130edo tracks}} | |||
; [[birdshite stalactite]] | |||
* [https://www.youtube.com/watch?v=q41n5XI6YA4 ''wazzock''] (2024) | |||
; [[Sevish]] | |||
* [https://www.youtube.com/watch?v=30UQVYWnsDU Narrative Wars] | |||
; [[Gene Ward Smith]] | |||
* [https://www.archive.org/details/TheParadiseOfCantor ''The Paradise of Cantor''] [https://www.archive.org/download/TheParadiseOfCantor/cantor.mp3 play] (2006) | |||
[[Category:Harry]] | |||
[[Category:Hemischis]] | |||
[[Category:Hemiwürschmidt]] | |||
[[Category:Listen]] | |||
[[Category:Sesquiquartififths]] |