130edo: Difference between revisions
ArrowHead294 (talk | contribs) m Formatting |
Add lumatone mapping link. |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
Line 6: | Line 6: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|130|columns= | {{Harmonics in equal|130|columns=9}} | ||
{{Harmonics in equal|130|columns= | {{Harmonics in equal|130|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 130edo (continued)}} | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 130 factors into | Since 130 factors into 2 × 5 × 13, 130edo has subset edos {{EDOs| 2, 5, 10, 13, 26, and 65 }}. | ||
[[260edo]], which divides the edostep in two, provides a strong correction for the 29th harmonic. | [[260edo]], which divides the edostep in two, provides a strong correction for the 29th harmonic. | ||
Line 19: | Line 19: | ||
! Degree | ! Degree | ||
! Cents | ! Cents | ||
! Approximate | ! Approximate ratios | ||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.00 | ||
| 1/1 | | 1/1 | ||
|- | |- | ||
| 1 | | 1 | ||
| 9. | | 9.23 | ||
| ''126/125'', 144/143, 169/168, 176/175, 196/195, 225/224 | | ''126/125'', 144/143, 169/168, 176/175, 196/195, 225/224 | ||
|- | |- | ||
| 2 | | 2 | ||
| 18. | | 18.46 | ||
| 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120 | | 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120 | ||
|- | |- | ||
| 3 | | 3 | ||
| 27. | | 27.69 | ||
| 56/55, 64/63, 65/64, 66/65 | | 56/55, 64/63, 65/64, 66/65 | ||
|- | |- | ||
| 4 | | 4 | ||
| 36. | | 36.92 | ||
| 45/44, 49/48, 50/49, ''55/54'' | | 45/44, 49/48, 50/49, ''55/54'' | ||
|- | |- | ||
| 5 | | 5 | ||
| 46. | | 46.15 | ||
| 36/35, 40/39 | | 36/35, 40/39 | ||
|- | |- | ||
| 6 | | 6 | ||
| 55. | | 55.38 | ||
| 33/32 | | 33/32 | ||
|- | |- | ||
| 7 | | 7 | ||
| 64. | | 64.62 | ||
| 27/26, 28/27 | | 27/26, 28/27 | ||
|- | |- | ||
| 8 | | 8 | ||
| 73. | | 73.85 | ||
| 25/24, 26/25 | | 25/24, 26/25 | ||
|- | |- | ||
| 9 | | 9 | ||
| 83. | | 83.08 | ||
| 21/20, 22/21 | | 21/20, 22/21 | ||
|- | |- | ||
| 10 | | 10 | ||
| 92. | | 92.31 | ||
| 135/128 | | 135/128 | ||
|- | |- | ||
| 11 | | 11 | ||
| 101. | | 101.54 | ||
| 35/33 | | 35/33 | ||
|- | |- | ||
| 12 | | 12 | ||
| 110. | | 110.77 | ||
| 16/15 | | 16/15 | ||
|- | |- | ||
| 13 | | 13 | ||
| 120. | | 120.00 | ||
| 15/14 | | 15/14 | ||
|- | |- | ||
| 14 | | 14 | ||
| 129. | | 129.23 | ||
| 14/13 | | 14/13 | ||
|- | |- | ||
| 15 | | 15 | ||
| 138. | | 138.46 | ||
| 13/12 | | 13/12 | ||
|- | |- | ||
| 16 | | 16 | ||
| 147. | | 147.69 | ||
| 12/11 | | 12/11 | ||
|- | |- | ||
| 17 | | 17 | ||
| 156. | | 156.92 | ||
| 35/32 | | 35/32 | ||
|- | |- | ||
| 18 | | 18 | ||
| 166. | | 166.15 | ||
| 11/10 | | 11/10 | ||
|- | |- | ||
| 19 | | 19 | ||
| 175. | | 175.38 | ||
| 72/65 | | 72/65 | ||
|- | |- | ||
| 20 | | 20 | ||
| 184. | | 184.62 | ||
| 10/9 | | 10/9 | ||
|- | |- | ||
| 21 | | 21 | ||
| 193. | | 193.85 | ||
| 28/25 | | 28/25 | ||
|- | |- | ||
| 22 | | 22 | ||
| 203. | | 203.08 | ||
| 9/8 | | 9/8 | ||
|- | |- | ||
| 23 | | 23 | ||
| 212. | | 212.31 | ||
| 44/39 | | 44/39 | ||
|- | |- | ||
| 24 | | 24 | ||
| 221. | | 221.54 | ||
| 25/22 | | 25/22 | ||
|- | |- | ||
| 25 | | 25 | ||
| 230. | | 230.77 | ||
| 8/7 | | 8/7 | ||
|- | |- | ||
| 26 | | 26 | ||
| 240. | | 240.00 | ||
| 55/48 | | 55/48 | ||
|- | |- | ||
| 27 | | 27 | ||
| 249. | | 249.23 | ||
| 15/13 | | 15/13 | ||
|- | |- | ||
| 28 | | 28 | ||
| 258. | | 258.46 | ||
| 64/55 | | 64/55 | ||
|- | |- | ||
| 29 | | 29 | ||
| 267. | | 267.69 | ||
| 7/6 | | 7/6 | ||
|- | |- | ||
| 30 | | 30 | ||
| 276. | | 276.92 | ||
| 75/64 | | 75/64 | ||
|- | |- | ||
| 31 | | 31 | ||
| 286. | | 286.15 | ||
| 13/11 | | 13/11 | ||
|- | |- | ||
| 32 | | 32 | ||
| 295. | | 295.38 | ||
| 32/27 | | 32/27 | ||
|- | |- | ||
| 33 | | 33 | ||
| 304. | | 304.62 | ||
| 25/21 | | 25/21 | ||
|- | |- | ||
| 34 | | 34 | ||
| 313. | | 313.85 | ||
| 6/5 | | 6/5 | ||
|- | |- | ||
| 35 | | 35 | ||
| 323. | | 323.08 | ||
| 65/54 | | 65/54 | ||
|- | |- | ||
| 36 | | 36 | ||
| 332. | | 332.31 | ||
| 40/33 | | 40/33 | ||
|- | |- | ||
| 37 | | 37 | ||
| 341. | | 341.54 | ||
| 39/32 | | 39/32 | ||
|- | |- | ||
| 38 | | 38 | ||
| 350. | | 350.77 | ||
| 11/9, 27/22 | | 11/9, 27/22 | ||
|- | |- | ||
| 39 | | 39 | ||
| 360. | | 360.00 | ||
| 16/13 | | 16/13 | ||
|- | |- | ||
| 40 | | 40 | ||
| 369. | | 369.23 | ||
| 26/21 | | 26/21 | ||
|- | |- | ||
| 41 | | 41 | ||
| 378. | | 378.46 | ||
| 56/45 | | 56/45 | ||
|- | |- | ||
| 42 | | 42 | ||
| 387. | | 387.69 | ||
| 5/4 | | 5/4 | ||
|- | |- | ||
| 43 | | 43 | ||
| 396. | | 396.92 | ||
| 44/35 | | 44/35 | ||
|- | |- | ||
| 44 | | 44 | ||
| 406. | | 406.15 | ||
| 81/64 | | 81/64 | ||
|- | |- | ||
| 45 | | 45 | ||
| 415. | | 415.38 | ||
| 14/11 | | 14/11 | ||
|- | |- | ||
| 46 | | 46 | ||
| 424. | | 424.62 | ||
| 32/25 | | 32/25 | ||
|- | |- | ||
| 47 | | 47 | ||
| 433. | | 433.85 | ||
| 9/7 | | 9/7 | ||
|- | |- | ||
| 48 | | 48 | ||
| 443. | | 443.08 | ||
| 84/65, 128/99 | | 84/65, 128/99 | ||
|- | |- | ||
| 49 | | 49 | ||
| 452. | | 452.31 | ||
| 13/10 | | 13/10 | ||
|- | |- | ||
| 50 | | 50 | ||
| 461. | | 461.54 | ||
| 64/49, ''72/55'' | | 64/49, ''72/55'' | ||
|- | |- | ||
| 51 | | 51 | ||
| 470. | | 470.77 | ||
| 21/16 | | 21/16 | ||
|- | |- | ||
| 52 | | 52 | ||
| 480. | | 480.00 | ||
| 33/25 | | 33/25 | ||
|- | |- | ||
| 53 | | 53 | ||
| 489. | | 489.23 | ||
| 65/49 | | 65/49 | ||
|- | |- | ||
| 54 | | 54 | ||
| 498. | | 498.46 | ||
| 4/3 | | 4/3 | ||
|- | |- | ||
| 55 | | 55 | ||
| 507. | | 507.69 | ||
| 75/56 | | 75/56 | ||
|- | |- | ||
| 56 | | 56 | ||
| 516. | | 516.92 | ||
| 27/20 | | 27/20 | ||
|- | |- | ||
| 57 | | 57 | ||
| 526. | | 526.15 | ||
| 65/48 | | 65/48 | ||
|- | |- | ||
| 58 | | 58 | ||
| 535. | | 535.38 | ||
| 15/11 | | 15/11 | ||
|- | |- | ||
| 59 | | 59 | ||
| 544. | | 544.62 | ||
| 48/35 | | 48/35 | ||
|- | |- | ||
| 60 | | 60 | ||
| 553. | | 553.85 | ||
| 11/8 | | 11/8 | ||
|- | |- | ||
| 61 | | 61 | ||
| 563. | | 563.08 | ||
| 18/13 | | 18/13 | ||
|- | |- | ||
| 62 | | 62 | ||
| 572. | | 572.31 | ||
| 25/18 | | 25/18 | ||
|- | |- | ||
| 63 | | 63 | ||
| 581. | | 581.54 | ||
| 7/5 | | 7/5 | ||
|- | |- | ||
| 64 | | 64 | ||
| 590. | | 590.77 | ||
| 45/32 | | 45/32 | ||
|- | |- | ||
| 65 | | 65 | ||
| 600. | | 600.00 | ||
| 99/70, 140/99 | | 99/70, 140/99 | ||
|- | |- | ||
Line 323: | Line 323: | ||
| [[File:Sagittal sharp.png]] | | [[File:Sagittal sharp.png]] | ||
|} | |} | ||
== Approximation to JI == | |||
=== Zeta peak index === | |||
{{ZPI | |||
| zpi = 796 | |||
| steps = 130.003910460506 | |||
| step size = 9.23049157328654 | |||
| tempered height = 10.355108 | |||
| pure height = 10.339572 | |||
| integral = 1.634018 | |||
| gap = 19.594551 | |||
| octave = 1199.96390452725 | |||
| consistent = 16 | |||
| distinct = 16 | |||
}} | |||
== Regular temperament properties == | == Regular temperament properties == | ||
Line 330: | Line 345: | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 338: | Line 353: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 3136/3125, 19683/19600 | | 2401/2400, 3136/3125, 19683/19600 | ||
| {{ | | {{Mapping| 130 206 302 365 }} | ||
| −0.119 | | −0.119 | ||
| 0.311 | | 0.311 | ||
Line 345: | Line 360: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 243/242, 441/440, 3136/3125, 4000/3993 | | 243/242, 441/440, 3136/3125, 4000/3993 | ||
| {{ | | {{Mapping| 130 206 302 365 450 }} | ||
| −0.241 | | −0.241 | ||
| 0.370 | | 0.370 | ||
Line 352: | Line 367: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 243/242, 351/350, 364/363, 441/440, 3136/3125 | | 243/242, 351/350, 364/363, 441/440, 3136/3125 | ||
| {{ | | {{Mapping| 130 206 302 365 450 481 }} | ||
| −0.177 | | −0.177 | ||
| 0.367 | | 0.367 | ||
Line 364: | Line 379: | ||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
|- | |- | ||
! Periods<br | ! Periods<br>per 8ve | ||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br | ! Associated<br>ratio* | ||
! Temperament | ! Temperament | ||
|- | |- | ||
Line 386: | Line 401: | ||
| 83.08 | | 83.08 | ||
| 21/20 | | 21/20 | ||
| [[ | | [[Sextilifourths]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 437: | Line 452: | ||
|- | |- | ||
| 2 | | 2 | ||
| 54\130<br | | 54\130<br>(11\130) | ||
| 498.46<br | | 498.46<br>(101.54) | ||
| 4/3<br | | 4/3<br>(35/33) | ||
| [[Bischismic]] | | [[Bischismic]] | ||
|- | |- | ||
| 5 | | 5 | ||
| 27\130<br | | 27\130<br>(1\130) | ||
| 249.23<br | | 249.23<br>(9.23) | ||
| 81/70<br | | 81/70<br>(176/175) | ||
| [[ | | [[Hemiquintile]] | ||
|- | |- | ||
| 10 | | 10 | ||
| 27\130<br | | 27\130<br>(1\130) | ||
| 249.23<br | | 249.23<br>(9.23) | ||
| 15/13<br | | 15/13<br>(176/175) | ||
| [[Decoid]] | | [[Decoid]] | ||
|- | |- | ||
| 10 | | 10 | ||
| 54\130<br | | 54\130<br>(2\130) | ||
| 498.46<br | | 498.46<br>(18.46) | ||
| 4/3<br | | 4/3<br>(81/80) | ||
| [[ | | [[Decile]] | ||
|- | |- | ||
| 26 | | 26 | ||
| 54\130<br | | 54\130<br>(1\130) | ||
| 498.46<br | | 498.46<br>(9.23) | ||
| 4/3<br | | 4/3<br>(225/224) | ||
| [[Bosonic]] | | [[Bosonic]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Scales == | == Scales == | ||
Line 564: | Line 547: | ||
| [[Octave]] (2/1, 0{{c}}) | | [[Octave]] (2/1, 0{{c}}) | ||
|} | |} | ||
== Instruments == | |||
[[Lumatone mapping for 130edo]] | |||
== Music == | == Music == |