Sqrtphi: Difference between revisions
Wikispaces>FREEZE No edit summary |
m - parent category |
||
(9 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
The '''sqrtphi''' is a temperament for the 7, 11, 13, 17, and 19 prime limits. It is a member of [[kleismic family]], [[mirkwai clan]] and [[Wizmic microtemperaments|wizmic temperaments]]. The name "sqrtphi" stands for "square root of phi", which means the positive square root of the [[golden ratio]] <math>(\sqrt{\varphi} = \sqrt{\frac{1+\sqrt{5}}{2}})</math> as a frequency ratio. | |||
See [[Kleismic family #Sqrtphi|Kleismic family]] for more technical data. | |||
== Tuning spectrum == | |||
Gencom: [2 14/11; 325/324 364/363 375/374 400/399 442/441 595/594] | Gencom: [2 14/11; 325/324 364/363 375/374 400/399 442/441 595/594] | ||
Gencom | Gencom mapping: [{{val|1 12 11 16 17 28 27 -2}}, {{val|0 -30 -25 -38 -39 -70 -66 18}}] | ||
{| class="wikitable center-all" | |||
{| class="wikitable" | |||
|- | |- | ||
! | | ! | [[eigenmonzo|eigenmonzo<br>(unchanged-interval]]) | ||
! | | ! | undecimal<br>major third (¢) | ||
! | comments | |||
|- | |- | ||
| | 26/21 | | | 26/21 | ||
| | 415.12662 | | | 415.12662 | ||
| | | |||
|- | |- | ||
| | 17/13 | | | 17/13 | ||
| | 416.10694 | | | 416.10694 | ||
| | | |||
|- | |- | ||
| | 18/13 | | | 18/13 | ||
| | 416.33823 | | | 416.33823 | ||
| | | |||
|- | |- | ||
| | 15/11 | | | 15/11 | ||
| | 416.44058 | | | 416.44058 | ||
| | | |||
|- | |- | ||
| | 13/11 | | | 13/11 | ||
| | 416.47711 | | | 416.47711 | ||
| | | |||
|- | |- | ||
| | 18/17 | | | 18/17 | ||
| | 416.49243 | | | 416.49243 | ||
| | | |||
|- | |- | ||
| | | | | 15/14 | ||
| | 416.50336 | | | 416.50336 | ||
| | | |||
|- | |- | ||
| | | | | 14/13 | ||
| | 416.50932 | | | 416.50932 | ||
| | | |||
|- | |- | ||
| | | | | 15/13 | ||
| | 416.51607 | | | 416.51607 | ||
| | | |||
|- | |- | ||
| | | | | 19/16 | ||
| | 416.52850 | | | 416.52850 | ||
| | | |||
|- | |- | ||
| | 22/17 | | | 22/17 | ||
| | 416.53195 | | | 416.53195 | ||
| | | |||
|- | |- | ||
| | 13/12 | | | 13/12 | ||
| | 416.53568 | | | 416.53568 | ||
| | | |||
|- | |- | ||
| | 20/19 | | | 20/19 | ||
| | 416.53952 | | | 416.53952 | ||
| | | |||
|- | |- | ||
| | | | | 11/9 | ||
| | 416.54324 | | | 416.54324 | ||
| | | |||
|- | |- | ||
| | φ | | | (φ) | ||
| | 416.54515 | | | 416.54515 | ||
| | square root of phi | |||
|- | |- | ||
| | | | | 5/4 | ||
| | 416.54745 | | | 416.54745 | ||
| | | |||
|- | |- | ||
| | 26/19 | | | 26/19 | ||
| | 416.55665 | | | 416.55665 | ||
| | | |||
|- | |- | ||
| | 16/13 | | | 16/13 | ||
| | 416.56389 | | | 416.56389 | ||
| | | |||
|- | |- | ||
| | 19/15 | | | 19/15 | ||
| | 416.56499 | | | 416.56499 | ||
| | | |||
|- | |- | ||
| | 17/14 | | | 17/14 | ||
| | 416.56680 | | | 416.56680 | ||
| | | |||
|- | |- | ||
| | 22/21 | | | 22/21 | ||
| | 416.57024 | | | 416.57024 | ||
| | | |||
|- | |- | ||
| | 13/10 | | | 13/10 | ||
| | 416.57302 | | | 416.57302 | ||
| | 13, 15, 17, 19 and 21-odd-limit minimax | |||
|- | |- | ||
| | 24/19 | | | 24/19 | ||
| | 416.57413 | | | 416.57413 | ||
| | | |||
|- | |- | ||
| | 16/15 | | | 16/15 | ||
| | 416.57693 | | | 416.57693 | ||
| | | |||
|- | |- | ||
| | 19/17 | | | 19/17 | ||
| | 416.57807 | | | 416.57807 | ||
| | | |||
|- | |- | ||
| | 24/17 | | | 24/17 | ||
| | 416.58332 | | | 416.58332 | ||
| | | |||
|- | |- | ||
| | 19/14 | | | 19/14 | ||
| | 416.58370 | | | 416.58370 | ||
| | | |||
|- | |- | ||
| | 19/18 | | | 19/18 | ||
| | 416.58465 | | | 416.58465 | ||
| | | |||
|- | |- | ||
| | | | | 9/7 | ||
| | 416.58709 | | | 416.58709 | ||
| | | |||
|- | |- | ||
| | 21/19 | | | 21/19 | ||
| | 416.58991 | | | 416.58991 | ||
| | | |||
|- | |- | ||
| | 17/16 | | | 17/16 | ||
| | 416.59158 | | | 416.59158 | ||
| | | |||
|- | |- | ||
| | 22/19 | | | 22/19 | ||
| | 416.59991 | | | 416.59991 | ||
| | | |||
|- | |- | ||
| | | | | 4/3 | ||
| | 416.60150 | | | 416.60150 | ||
| | 5-odd-limit minimax | |||
|- | |- | ||
| | 21/16 | | | 21/16 | ||
| | 416.60616 | | | 416.60616 | ||
| | | |||
|- | |- | ||
| | | | | 8/7 | ||
| | 416.60984 | | | 416.60984 | ||
| | 7 and 9-odd-limit minimax | |||
|- | |- | ||
| | 20/17 | | | 20/17 | ||
| | 416.61850 | | | 416.61850 | ||
| | | |||
|- | |- | ||
| | | | | 11/8 | ||
| | 416.63287 | | | 416.63287 | ||
| | 11-odd-limit minimax | |||
|- | |- | ||
| | | | | 10/9 | ||
| | 416.64011 | | | 416.64011 | ||
| | | |||
|- | |- | ||
| | 21/20 | | | 21/20 | ||
| | 416.64030 | | | 416.64030 | ||
| | | |||
|- | |- | ||
| | | | | 7/6 | ||
| | 416.64114 | | | 416.64114 | ||
| | | |||
|- | |- | ||
| | 17/15 | | | 17/15 | ||
| | 416.66485 | | | 416.66485 | ||
| | | |||
|- | |- | ||
| | | | | 7/5 | ||
| | 416.72983 | | | 416.72983 | ||
| | | |||
|- | |- | ||
| | 12/11 | | | 12/11 | ||
| | 416.73745 | | | 416.73745 | ||
| | | |||
|- | |- | ||
| | 11/10 | | | 11/10 | ||
| | 416.78541 | | | 416.78541 | ||
| | | |||
|- | |- | ||
| | | | | 6/5 | ||
| | 416.87174 | | | 416.87174 | ||
| | | |||
|- | |- | ||
| | 21/17 | | | 21/17 | ||
| | 417.08725 | | | 417.08725 | ||
| | | |||
|- | |- | ||
| | 14/11 | | | 14/11 | ||
| | 417.50796 | | | 417.50796 | ||
| | | |||
|} | |} | ||
[[Category: | |||
[[Category: | == Scales == | ||
* [[Sqrtphi17]] | |||
* [[Sqrtphi23]] | |||
* [[Sqrtphi49]] | |||
== Music == | |||
'''[[Vito Sicurella]]''' | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Sicurella/A%20Fight%20For%20Phi.mp3 A Fight for Phi] | |||
'''[[Chris Vaisvil]]''' | |||
* [http://micro.soonlabel.com/sqrt_phi/daily20111123a-sqrt-phi-17.mp3 Prelude for Piano in Square root of Phi Tuning] | |||
[[Category:Sqrtphi| ]] <!-- main article --> | |||
[[Category:Rank-2 temperaments]] | |||
[[Category:Kleismic family]] | |||
[[Category:Golden ratio]] |