643edo: Difference between revisions
Wikispaces>FREEZE No edit summary |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" |
||
(17 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
[[Category: | {{ED intro}} | ||
[[Category: | |||
== Theory == | |||
643edo is [[consistency|distinctly consistent]] to the [[21-odd-limit]], with a generally flat tendency, but the [[5/1|5th harmonic]] is only 0.000439 cents sharp as the denominator of a convergent to log<sub>2</sub>5, after [[146edo|146]] and before [[4004edo|4004]]. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the 5-limit and [[2401/2400]] in the 7-limit, so that it [[support]]s the [[sesquiquartififths]] temperament. In the 11-limit it tempers out [[3025/3024]] and 151263/151250; in the 13-limit [[1001/1000]], [[1716/1715]] and [[4225/4224]]; in the 17-limit [[1089/1088]], [[1701/1700]], [[2431/2430]] and [[2601/2600]]; and in the 19-limit 1331/1330, [[1521/1520]], [[1729/1728]], 2376/2375 and 2926/2925. It provides the [[optimal patent val]] for the rank-3 13-limit [[vili]] temperament. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|643}} | |||
=== Subsets and supersets === | |||
643edo is the 117th [[prime edo]]. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -1019 643 }} | |||
| {{mapping| 643 1019 }} | |||
| +0.0771 | |||
| 0.0771 | |||
| 4.13 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, {{monzo| 1 99 -68 }} | |||
| {{mapping| 643 1019 1493 }} | |||
| +0.0513 | |||
| 0.7270 | |||
| 3.90 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 32805/32768, {{monzo| 9 21 -17 -1 }} | |||
| {{mapping| 643 1019 1493 1805 }} | |||
| +0.0600 | |||
| 0.0647 | |||
| 3.47 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 3025/3024, 32805/32768, 391314/390625 | |||
| {{mapping| 643 1019 1493 1805 2224 }} | |||
| +0.0927 | |||
| 0.0874 | |||
| 4.68 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 1001/1000, 1716/1715, 3025/3024, 4225/4224, 32805/32768 | |||
| {{mapping| 643 1019 1493 1805 2224 2379 }} | |||
| +0.1094 | |||
| 0.0881 | |||
| 4.72 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 1001/1000, 1089/1088, 1701/1700, 1716/1715, 2601/2600, 4225/4224 | |||
|{{mapping| 643 1019 1493 1805 2224 2379 2628 }} | |||
| +0.1094 | |||
| 0.0816 | |||
| 4.37 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 1001/1000, 1089/1088, 1521/1520, 1701/1700, 1716/1715, 1729/1728, 2601/2600 | |||
| {{mapping| 643 1019 1493 1805 2224 2379 2628 2731 }} | |||
| +0.1186 | |||
| 0.0801 | |||
| 4.29 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 94\643 | |||
| 175.43 | |||
| 448/405 | |||
| [[Sesquiquartififths]] | |||
|- | |||
| 1 | |||
| 267\643 | |||
| 498.29 | |||
| 4/3 | |||
| [[Helmholtz (temperament)|Helmholtz]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Francium]] | |||
* "Bobson Dugnutt" from ''Don't Give Your Kids These Names!'' (2025) − [https://open.spotify.com/track/1ROUQlzxJR7pDpM8GLujol Spotify] | [https://francium223.bandcamp.com/track/bobson-dugnutt Bandcamp] | [https://www.youtube.com/watch?v=Bg2w1__AW4k YouTube] − in Botolphic, 643edo tuning | |||
[[Category:Sesquiquartififths]] | |||
[[Category:Vili]] |