643edo: Difference between revisions

Wikispaces>FREEZE
No edit summary
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|"
 
(17 intermediate revisions by 9 users not shown)
Line 1: Line 1:
The ''643 equal division'' divides the octave into 643 equal parts of 1.866 cents each. It is uniquely [[consistent|consistent]] to the 21-limit, with a generally flat tendency. It tempers out 32805/32768 in the 5-limit and 2401/2400 in the 7-limit, so that it supports [[Schismatic_family#Sesquiquartififths|sesquiquartififths temperament]]. In the 11-limit it tempers out 3025/3024 and | -1 3 -4 5 -2 >; in the 13-limit 1001/1000, 1716/1715 and 4225/4224; in the 17-limit 1089/1088, 1701/1700, 2431/2430 and 2601/2600; and in the 19-limit 1331/1330, 1521/1520, 1729/1728, 2376/2375 and 2926/2925. It provides the [[Optimal_patent_val|optimal patent val]] for the rank three 13-limit temperament [[Breed_family#Vili|vili temperament]].
{{Infobox ET}}
[[Category:sesquiquartififths]]
{{ED intro}}
[[Category:vili]]
 
== Theory ==
643edo is [[consistency|distinctly consistent]] to the [[21-odd-limit]], with a generally flat tendency, but the [[5/1|5th harmonic]] is only 0.000439 cents sharp as the denominator of a convergent to log<sub>2</sub>5, after [[146edo|146]] and before [[4004edo|4004]]. As an equal temperament, it [[tempering out|tempers out]] [[32805/32768]] in the 5-limit and [[2401/2400]] in the 7-limit, so that it [[support]]s the [[sesquiquartififths]] temperament. In the 11-limit it tempers out [[3025/3024]] and 151263/151250; in the 13-limit [[1001/1000]], [[1716/1715]] and [[4225/4224]]; in the 17-limit [[1089/1088]], [[1701/1700]], [[2431/2430]] and [[2601/2600]]; and in the 19-limit 1331/1330, [[1521/1520]], [[1729/1728]], 2376/2375 and 2926/2925. It provides the [[optimal patent val]] for the rank-3 13-limit [[vili]] temperament.
 
=== Prime harmonics ===
{{Harmonics in equal|643}}
 
=== Subsets and supersets ===
643edo is the 117th [[prime edo]].
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -1019 643 }}
| {{mapping| 643 1019 }}
| +0.0771
| 0.0771
| 4.13
|-
| 2.3.5
| 32805/32768, {{monzo| 1 99 -68 }}
| {{mapping| 643 1019 1493 }}
| +0.0513
| 0.7270
| 3.90
|-
| 2.3.5.7
| 2401/2400, 32805/32768, {{monzo| 9 21 -17 -1 }}
| {{mapping| 643 1019 1493 1805 }}
| +0.0600
| 0.0647
| 3.47
|-
| 2.3.5.7.11
| 2401/2400, 3025/3024, 32805/32768, 391314/390625
| {{mapping| 643 1019 1493 1805 2224 }}
| +0.0927
| 0.0874
| 4.68
|-
| 2.3.5.7.11.13
| 1001/1000, 1716/1715, 3025/3024, 4225/4224, 32805/32768
| {{mapping| 643 1019 1493 1805 2224 2379 }}
| +0.1094
| 0.0881
| 4.72
|-
| 2.3.5.7.11.13.17
| 1001/1000, 1089/1088, 1701/1700, 1716/1715, 2601/2600, 4225/4224
|{{mapping| 643 1019 1493 1805 2224 2379 2628 }}
| +0.1094
| 0.0816
| 4.37
|-
| 2.3.5.7.11.13.17.19
| 1001/1000, 1089/1088, 1521/1520, 1701/1700, 1716/1715, 1729/1728, 2601/2600
| {{mapping| 643 1019 1493 1805 2224 2379 2628 2731 }}
| +0.1186
| 0.0801
| 4.29
|}
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 94\643
| 175.43
| 448/405
| [[Sesquiquartififths]]
|-
| 1
| 267\643
| 498.29
| 4/3
| [[Helmholtz (temperament)|Helmholtz]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Music ==
; [[Francium]]
* "Bobson Dugnutt" from ''Don't Give Your Kids These Names!'' (2025) − [https://open.spotify.com/track/1ROUQlzxJR7pDpM8GLujol Spotify] | [https://francium223.bandcamp.com/track/bobson-dugnutt Bandcamp] | [https://www.youtube.com/watch?v=Bg2w1__AW4k YouTube] − in Botolphic, 643edo tuning
 
[[Category:Sesquiquartififths]]
[[Category:Vili]]