419edo: Difference between revisions

Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|419}}. ==Theory== 419et tempers out 32805/32768, 29360128/29296875, 1959552/1953125, 420175/419904 and 2100875/2097152 in the 7-limit and 3..."
 
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|"
 
(19 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|419}}.
{{ED intro}}
==Theory==
 
419et tempers out [[32805/32768]], 29360128/29296875, 1959552/1953125, 420175/419904 and [[2100875/2097152]] in the 7-limit and 35156250/35153041, 25165824/25109315, 26214400/26198073, [[4000/3993]], 1366875/1362944, 759375/758912, 21437500/21434787, 2359296/2358125, 472392/471625, 369140625/369098752, [[200704/200475]], [[441/440]], 43046721/43025920, 17537553/17500000, 422576/421875, 160083/160000, 199297406/199290375, 244515348/244140625 and 67110351/67108864 in the 11-limit. It supports the [[sextilififths]] temperament.
== Theory ==
419edo is a decent 7-limit system, and is [[consistent]] to the [[9-odd-limit]]. The equal temperament [[tempering out|tempers out]] 32805/32768 ([[schisma]]) in the 5-limit; 235298/234375 (triwellisma), 420175/419904 (wizma) in the 7-limit. It [[support]]s and provides the [[optimal patent val]] for [[sextilifourths]], the {{nowrap|130 & 289}} temperament, in the 7-limit.
 
Extending it to the 11-limit requires choosing which mapping one wants to use, as both are nearly equally far off the mark. Using the 419e [[val]], it tempers out [[3025/3024]], [[5632/5625]], and [[8019/8000]]. Using the [[patent val]], it tempers out [[441/440]], [[4000/3993]], and 14700/14641 in the 11-limit. The patent val supports 11-limit sextilifourths, though [[289edo]] is better suited for that purpose.
 
The same can be said of the mapping for 13, with the 419e val tempering out [[676/675]], [[1716/1715]], [[4225/4224]], and 4459/4455, and the 419f val tempering out [[729/728]], [[2200/2197]], 2205/2197, 3584/3575, and 4459/4455.
 
=== Odd harmonics ===
{{Harmonics in equal|419}}
 
=== Subsets and supersets ===
419edo is the 81th [[prime edo]].
419edo is the 81th [[prime edo]].
{{Harmonics in equal|419}}
 
==Scales==
== Regular temperament properties ==
*[[Sextilififths13]]
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -664 419 }}
| {{mapping| 419​ 664​ }}
| +0.0897
| 0.0897
| 3.13
|-
| 2.3.5
| 32805/32768, {{monzo| 41 43 -47 }}
| {{mapping| 419 ​664​ 973 }}
| +0.0137
| 0.1301
| 4.54
|-
| 2.3.5.7
| 32805/32768, 235298/234375, 420175/419904
| {{mapping| 419 ​664​ 973 ​1176 ​}}
| +0.0821
| 0.1635
| 5.71
|-
| 2.3.5.7.11
| 441/440, 4000/3993, 32805/32768, 420175/419904
| {{mapping| 419​ 664 ​973 ​1176​ 1450 }} (419)
| −0.0168
| 0.2460
| 8.59
|}
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 29\419
| 83.05
| 21/20
| [[Sextilifourths]] (419f)
|-
| 1
| 49\419
| 140.33
| 243/224
| [[Tsaharuk]] (7-limit)
|-
| 1
| 174\419
| 498.33
| 162/125
| [[Helmholtz (temperament)|Helmholtz]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Scales ==
* [[Sextilifourths13]]
 
== Music ==
; [[Francium]]
* [https://www.youtube.com/watch?v=cXvlQxvwUIM ''Cultural Appropriation?''] (2023)
 
[[Category:Listen]]
[[Category:Sextilifourths]]