87edo: Difference between revisions

BudjarnLambeth (talk | contribs)
m Theory: (''See regular temperament for more about what all this means and how to use it.'')
Tag: Reverted
No need to remind readers of what a regular temperament is everywhere
Tag: Undo
Line 9: Line 9:
It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]].  
It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]].  


87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & 46}} temperament. The 8/7 generator of 17\87 is a remarkable 0.00061{{c}} sharper than the 13-limit [[CWE tuning|CWE generator]]. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.01479{{c}} sharp of the 13-limit CWE generator. (''See [[regular temperament]] for more about what all this means and how to use it.'')
87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & 46}} temperament. The 8/7 generator of 17\87 is a remarkable 0.00061{{c}} sharper than the 13-limit [[CWE tuning|CWE generator]]. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.01479{{c}} sharp of the 13-limit CWE generator.


=== Prime harmonics ===
=== Prime harmonics ===