32edo: Difference between revisions
Re-organize: intro to JI approximation first, some temps next, and data last |
m →Theory |
||
Line 12: | Line 12: | ||
The sharp fifth of 32edo can be used to generate a very unequal [[archy]] (specifically [[subgroup temperaments #Oceanfront|Oceanfront]]) [[5L 2s|diatonic scale]], with a [[diatonic semitone]] of 5 steps and a [[chromatic semitone]] of only 1. The "major third" (which can sound like both a major third and a flat fourth depending on context) is an interseptimal interval of 450¢, approximating [[9/7]] and [[13/10]], and the minor third is 262.5¢, approximating [[7/6]]. Because of the unequalness of the scale, the minor second is reduced to a fifth-tone, but it still strongly resembles "normal" diatonic music, especially for darker [[mode]]s. In addition to the sharp fifth, there is an alternative [[mavila|mavila-like]] flat fifth of 675¢ (inherited from [[16edo]]), but it is much more inaccurate and discordant than the sharp fifth. | The sharp fifth of 32edo can be used to generate a very unequal [[archy]] (specifically [[subgroup temperaments #Oceanfront|Oceanfront]]) [[5L 2s|diatonic scale]], with a [[diatonic semitone]] of 5 steps and a [[chromatic semitone]] of only 1. The "major third" (which can sound like both a major third and a flat fourth depending on context) is an interseptimal interval of 450¢, approximating [[9/7]] and [[13/10]], and the minor third is 262.5¢, approximating [[7/6]]. Because of the unequalness of the scale, the minor second is reduced to a fifth-tone, but it still strongly resembles "normal" diatonic music, especially for darker [[mode]]s. In addition to the sharp fifth, there is an alternative [[mavila|mavila-like]] flat fifth of 675¢ (inherited from [[16edo]]), but it is much more inaccurate and discordant than the sharp fifth. | ||
=== | === Odd harmonics === | ||
{{Harmonics in equal|32}} | {{Harmonics in equal|32}} | ||