Expanding tonal space: Difference between revisions
Links in section "Find out more about tonal space" updated |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 94: | Line 94: | ||
::::<math> | ::::<math> | ||
r_{12edo}=integer\left (\frac{386c+50c}{100.0} \right )\cdot 100=400</math> ¢ | r_{12edo}=integer\left (\frac{386c+50c}{100.0} \right )\cdot 100=400</math> ¢ | ||
== Number of distinct intervals == | |||
The first five octaves of Tonal Space contain a fairly large number of intervals footed on a common tonic of 0 ¢. The intervals are well structured in rows, with each row corresponding to a mode of the overtone scale. It may be of interest to the reader to know how many ''different'' intervals are present, since some obviously occur more than once. <br> | |||
To find out, we will scan the Horizon Chart line by line (mode by mode), from the bottom up. Mode 1 has no intervals between the fundamental and the next octave. In Mode 2 we find a pure fifth, the third harmonic. This is the first time the pure fifth appears, and - like any other interval - it is only considered once as we scan. | |||
Table 1 summarizes the scanning results from Mode 1 through Mode 16. | |||
: <u>Table 1</u>: Count of distinct intervals depending on the highest implemented mode | |||
: {| class="wikitable" style="text-align:center;" | |||
|- style="background-color:#6b82c6; color:#484848;" | |||
! <span style="font-weight:normal"> Mode 1 <br /> up to <br /> Mode 16 </span> <br /> Mode | |||
! <span style="font-weight:normal"> Number of <br />new intervals <br />found at <br />this mode </span> | |||
! Aggregated <br />number <br />of different <br />rational intervals | |||
! <span style="font-weight:normal"> Total number<br />of intervals<br />scanned </span> | |||
! <span style="font-weight:normal"> Mode<br />found in<br />octave<br />number </span> | |||
|- | |||
| style="background-color:#e2e2e2; color:#484848;" | '''16''' | |||
| 8 | |||
| style="background-color:#e2e2e2;" | 79 | |||
| 120 | |||
| 5 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''15''' | |||
| 8 | |||
| style="background-color:#e2e2e2;" | 71 | |||
| 105 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''14''' | |||
| 6 | |||
| style="background-color:#e2e2e2;" | 63 | |||
| 91 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''13''' | |||
| 12 | |||
| style="background-color:#e2e2e2;" | 57 | |||
| 78 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''12''' | |||
| 4 | |||
| style="background-color:#e2e2e2;" | 45 | |||
| 66 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''11''' | |||
| 10 | |||
| style="background-color:#e2e2e2;" | 41 | |||
| 55 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''10''' | |||
| 4 | |||
| style="background-color:#e2e2e2;" | 31 | |||
| 45 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''9''' | |||
| 6 | |||
| style="background-color:#e2e2e2;" | 27 | |||
| 36 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''8''' | |||
| 4 | |||
| style="background-color:#e2e2e2;" | 21 | |||
| 28 | |||
| 4 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''7''' | |||
| 6 | |||
| style="background-color:#e2e2e2;" | 17 | |||
| 21 | |||
| 3 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''6''' | |||
| 2 | |||
| style="background-color:#e2e2e2;" | 11 | |||
| 15 | |||
| 3 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''5''' | |||
| 4 <small>''(...)''</small> | |||
| style="background-color:#e2e2e2;" | 9 | |||
| 10 | |||
| 3 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''4''' | |||
| 2 <small>''(3rd, b7th)''</small> | |||
| style="background-color:#e2e2e2;" | 5 | |||
| 6 | |||
| 3 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''3''' | |||
| 2 <small>''(4th, 6th)''</small> | |||
| style="background-color:#e2e2e2;" | 3 | |||
| 3 | |||
| 2 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''2''' | |||
| 1 <small>''(5th)''</small> | |||
| style="background-color:#e2e2e2;" | 1 | |||
| 1 | |||
| 2 | |||
|- | |||
| style="background-color:#e2e2e2;" | '''1''' | |||
| 0 | |||
| style="background-color:#e2e2e2;" | 0 | |||
| 0 | |||
| 1 | |||
|} | |||
==A variety of projections of the model== | ==A variety of projections of the model== | ||
Line 99: | Line 211: | ||
Nevertheless, this representation is the basis for a variety of ''realtime'' ''operations on chords'' that a future musical instrument can apply. In addition, the Cartesian projection of tonal space (with a straight horizontal line for each mode of an overtone scale) can be easily handled in a programming environment. | Nevertheless, this representation is the basis for a variety of ''realtime'' ''operations on chords'' that a future musical instrument can apply. In addition, the Cartesian projection of tonal space (with a straight horizontal line for each mode of an overtone scale) can be easily handled in a programming environment. | ||
(See [[Expanding tonal space/projections|Part III]] for more on Cartesian and polar projections of tonal space.) | |||
==Polar projection of tonal space== | ==Polar projection of tonal space== | ||
Line 115: | Line 228: | ||
[[File:Fig-5 tonal space 753i aug.png|480px|center]] | [[File:Fig-5 tonal space 753i aug.png|480px|center]] | ||
<center><small><u>Fig.5</u>: Selection of different augmented chords </small></center> | <center><small><u>Fig.5</u>: Selection of different augmented chords </small></center> | ||
The model of tonal space is well suited for the design and comparison of chords. No matter what intervals we '''mark on any horizontal line''', the result will always be a chord made up of just intervals that share a common denominator. Therefore, any such chord is a local subset of the harmonic series at its proper position. | The model of tonal space is well suited for the design and comparison of chords. No matter what intervals we '''mark on any horizontal line''', the result will always be a chord made up of just intervals that share a common denominator. Therefore, any such chord is a local subset of the harmonic series at its proper position. | ||
A final example: If we want to create a major ''b''7 chord, we will find four suitable pitches in the horizontal Mode 4-line (Fig.3) from m=0 to m=3. | A final example: If we want to create a major ''b''7 chord, we will find four suitable pitches in the horizontal Mode 4-line (Fig.3) from m=0 to m=3. To replace the upper 7/4 interval with, say, a 9/5 interval, we determine the ''Least Common Denominator'' (''LCM'', which is 4*5=20 in this case) to get a 20:25:30:36 chord, which lives in Mode 20 (not shown) and sounds noticeably more dissonant. | ||
== Find out more about tonal space… == | == Find out more about tonal space… == | ||
====[[Expanding tonal space/planar extensions|Part II: Planar extensions]]==== | ====[[Expanding tonal space/planar extensions|Part II: <span style="font-weight:normal">Planar extensions</span>]]==== | ||
====[[Expanding tonal space/projections|Part III: <span style="font-weight:normal">Projections</span>]]==== | |||
====[[Expanding tonal space/third dimension|Part IV: <span style="font-weight:normal">Third dimension</span>]]==== | |||
==See also…== | ==See also…== |