289edo: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
mNo edit summary
Line 5: Line 5:
289edo is a strong 5-limit system with decent [[11-limit|11-]] and [[13-limit]] interpretations despite in[[consistency]] in the [[13-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] the [[schisma]], 32805/32768 in the [[5-limit]]; [[4375/4374]] and [[65625/65536]] in the [[7-limit]]; [[441/440]] and [[4000/3993]] in the 11-limit; and [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]] and [[2080/2079]] in the 13-limit.
289edo is a strong 5-limit system with decent [[11-limit|11-]] and [[13-limit]] interpretations despite in[[consistency]] in the [[13-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] the [[schisma]], 32805/32768 in the [[5-limit]]; [[4375/4374]] and [[65625/65536]] in the [[7-limit]]; [[441/440]] and [[4000/3993]] in the 11-limit; and [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]] and [[2080/2079]] in the 13-limit.


It is the [[optimal patent val]] for the [[13-limit]] rank-5 temperament tempering out 364/363, and the 13-limit [[history (temperament)|history]] temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for [[sextilififths]], [[quintaschis]], and [[quincy]] in both the 11- and 13-limit.  
It is the [[optimal patent val]] for the [[13-limit]] rank-5 temperament tempering out 364/363, and the 13-limit [[history (temperament)|history]] temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for [[sextilifourths]], [[quintaschis]], and [[quincy]] in both the 11- and 13-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
Line 88: Line 88:
| 83.04
| 83.04
| 21/20
| 21/20
| [[Sextilififths]]
| [[Sextilifourths]]
|-
|-
| 1
| 1