145edo: Difference between revisions

Cmloegcmluin (talk | contribs)
link to new page for Supports
Regular temperament properties: extend to the 23-limit
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 5 × 29
{{ED intro}}
| Step size = 8.27586¢
| Fifth = 85\145 (703.45¢) (→ [[29edo|17\29]])
| Major 2nd = 25\145 (206.90¢)
| Semitones = 15:10 (124.14¢ : 82.76¢)
| Consistency = 11
}}
The '''145 equal divisions of the octave''' ('''145edo''') or '''145(-tone) equal temperament''' ('''145tet''', '''145et''') when viewed from a [[regular temperament]] perspective, is the tuning system derived by dividing the [[octave]] into 145 [[equal]] parts of 8.28 [[cent]]s each.


== Theory ==
== Theory ==
145et tempers out [[1600000/1594323]] in the [[5-limit]]; [[4375/4374]] and [[5120/5103]] in the [[7-limit]]; [[441/440]] and [[896/891]] in the 11-limit; [[196/195]], [[352/351]] and [[364/363]] in the 13-limit; [[595/594]] in the 17-limit; [[343/342]] and [[476/475]] in the 19-limit.  
{{Nowrap| 145 {{=}} 5 × 29 }}, and 145edo shares the same perfect fifth with [[29edo]]. It is generally a sharp-tending system, with [[prime harmonic]]s 3 to 23 all tuned sharp except for [[7/1|7]], which is slightly flat. It is [[consistent]] to the [[11-odd-limit]], or the no-13 no-15 [[23-odd-limit]], with [[13/7]], [[15/8]] and their [[octave complement]]s being the only intervals going over the line.  


It is the [[optimal patent val]] for the 11-limit [[mystery]] temperament and the 11-limit rank-3 [[pele]] temperament. It also [[support]]s and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows [[werckismic chords]], because it tempers out 196/195 it allows [[mynucumic chords]], because it tempers out 352/351 it allows [[minthmic chords]], because it tempers out 364/363 it allows [[gentle chords]], and because it tempers out 847/845 it allows the [[cuthbert triad]], making it a very flexible harmonic system. The same is true of [[232edo]], the optimal patent val for 13-limit mystery.  
As an equal temperament, 145et [[tempering out|tempers out]] [[1600000/1594323]] in the [[5-limit]]; [[4375/4374]] and [[5120/5103]] in the [[7-limit]]; [[441/440]] and [[896/891]] in the [[11-limit]]; [[196/195]], [[352/351]], [[364/363]], [[676/675]], [[847/845]], and [[1001/1000]] in the [[13-limit]]; [[595/594]] in the [[17-limit]]; [[343/342]] and [[476/475]] in the [[19-limit]].
 
It is the [[optimal patent val]] for the 11-limit [[mystery]] temperament and the 11-limit rank-3 [[pele]] temperament. It also [[support]]s and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows [[werckismic chords]], because it tempers out 196/195 it allows [[mynucumic chords]], because it tempers out 352/351 it allows [[major minthmic chords]], because it tempers out 364/363 it allows [[minor minthmic chords]], and because it tempers out 847/845 it allows the [[cuthbert chords]], making it a very flexible harmonic system. The same is true of [[232edo]], the optimal patent val for 13-limit mystery.  


The 145c val provides a tuning for [[magic]] which is nearly identical to the [[POTE tuning]].  
The 145c val provides a tuning for [[magic]] which is nearly identical to the [[POTE tuning]].  


=== Prime harmonics ===
=== Prime harmonics ===
{{Primes in edo|145|columns=9}}
{{Harmonics in equal|145|intervals=prime}}
 
=== Octave stretch ===
145edo's approximated harmonics 3, 5, 11, 13, 17, 19, and 23 can be improved at the cost of a little worse 7, and moreover the approximated harmonic 13 can be brought to consistency, if slightly [[stretched and compressed tuning|compressing the octave]] is acceptable. [[375ed6]] is about at the sweet spot for this.
 
=== Subsets and supersets ===
145edo contains [[5edo]] and [[29edo]] as subset edos.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 32: Line 33:
| 2.3.5
| 2.3.5
| 1600000/1594323, {{monzo| 28 -3 -10 }}
| 1600000/1594323, {{monzo| 28 -3 -10 }}
| [{{val| 145 230 337 }}]
| {{Mapping| 145 230 337 }}
| -0.695
| -0.695
| 0.498
| 0.498
Line 39: Line 40:
| 2.3.5.7
| 2.3.5.7
| 4375/4374, 5120/5103, 50421/50000
| 4375/4374, 5120/5103, 50421/50000
| [{{val| 145 230 337 407 }}]
| {{Mapping| 145 230 337 407 }}
| -0.472
| -0.472
| 0.578
| 0.578
Line 46: Line 47:
| 2.3.5.7.11
| 2.3.5.7.11
| 441/440, 896/891, 3388/3375, 4375/4374
| 441/440, 896/891, 3388/3375, 4375/4374
| [{{val| 145 230 337 407 502 }}]
| {{Mapping| 145 230 337 407 502 }}
| -0.561
| -0.561
| 0.547
| 0.547
Line 53: Line 54:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 196/195, 352/351, 364/363, 676/675, 4375/4374
| 196/195, 352/351, 364/363, 676/675, 4375/4374
| [{{val| 145 230 337 407 502 537 }}]
| {{Mapping| 145 230 337 407 502 537 }}
| -0.630
| -0.630
| 0.522
| 0.522
Line 60: Line 61:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 196/195, 256/255, 352/351, 364/363, 676/675, 1156/1155
| 196/195, 256/255, 352/351, 364/363, 676/675, 1156/1155
| [{{val| 145 230 337 407 502 537 593 }}]
| {{Mapping| 145 230 337 407 502 537 593 }}
| -0.632
| -0.632
| 0.484
| 0.484
| 5.85
| 5.85
|-
| 2.3.5.7.11.13.17.19
| 196/195, 256/255, 343/342, 352/351, 361/360, 364/363, 476/475
| {{Mapping| 145 230 337 407 502 537 593 616 }}
| -0.565
| 0.486
| 5.87
|-
| 2.3.5.7.11.13.17.19.23
| 196/195, 256/255, 276/275, 352/351, 361/360, 364/363, 460/459, 476/475
| {{Mapping| 145 230 337 407 502 537 593 616 656 }}
| -0.519
| 0.476
| 5.75
|}
|}


Line 69: Line 84:
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator*
! Cents<br>(reduced)
! Cents*
! Associated<br>ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
Line 84: Line 99:
| 12\145
| 12\145
| 99.31
| 99.31
| 35/33, 18/17
| 18/17
| [[Quinticosiennic]]
| [[Quinticosiennic]]
|-
|-
Line 91: Line 106:
| 115.86
| 115.86
| 77/72
| 77/72
| [[Mercy]] / [[countermiracle]]
| [[Countermiracle]]
|-
|-
| 1
| 1
Line 97: Line 112:
| 322.76
| 322.76
| 3087/2560
| 3087/2560
| [[Senior]] / [[seniority]]
| [[Seniority]] / senator
|-
|-
| 1
| 1
Line 103: Line 118:
| 339.31
| 339.31
| 128/105
| 128/105
| [[Amity]]
| [[Amity]] / catamite
|-
|-
| 5
| 5
Line 117: Line 132:
| [[Mystery]]
| [[Mystery]]
|}
|}
== Scales ==
* [[Magic7]]
* [[Magic10]]
* [[Magic13]]
* [[Magic16]]
* [[Magic19]]
* [[Magic22]]


== Music ==
== Music ==
* [http://micro.soonlabel.com/magic/daily20120113-piano-magic16-.mp3 Chromatic piece in magic 16] [http://www.chrisvaisvil.com/ Chris Vaisvil]
; [[Chris Vaisvil]] ([http://www.chrisvaisvil.com/ site])
* [http://micro.soonlabel.com/magic/daily20120113-piano-magic16-.mp3 ''Chromatic piece in magic 16''] – magic[16] in 145edo tuning


[[Category:145edo]]
[[Category:Equal divisions of the octave]]
[[Category:Mystery]]
[[Category:Mystery]]
[[Category:Pele]]
[[Category:Pele]]
[[Category:Magic]]
[[Category:Magic]]
[[Category:Listen]]