145edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 292156061 - Original comment: ** |
→Regular temperament properties: extend to the 23-limit |
||
(23 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
= | == Theory == | ||
[[ | {{Nowrap| 145 {{=}} 5 × 29 }}, and 145edo shares the same perfect fifth with [[29edo]]. It is generally a sharp-tending system, with [[prime harmonic]]s 3 to 23 all tuned sharp except for [[7/1|7]], which is slightly flat. It is [[consistent]] to the [[11-odd-limit]], or the no-13 no-15 [[23-odd-limit]], with [[13/7]], [[15/8]] and their [[octave complement]]s being the only intervals going over the line. | ||
As an equal temperament, 145et [[tempering out|tempers out]] [[1600000/1594323]] in the [[5-limit]]; [[4375/4374]] and [[5120/5103]] in the [[7-limit]]; [[441/440]] and [[896/891]] in the [[11-limit]]; [[196/195]], [[352/351]], [[364/363]], [[676/675]], [[847/845]], and [[1001/1000]] in the [[13-limit]]; [[595/594]] in the [[17-limit]]; [[343/342]] and [[476/475]] in the [[19-limit]]. | |||
It is the [[optimal patent val]] for the 11-limit [[mystery]] temperament and the 11-limit rank-3 [[pele]] temperament. It also [[support]]s and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows [[werckismic chords]], because it tempers out 196/195 it allows [[mynucumic chords]], because it tempers out 352/351 it allows [[major minthmic chords]], because it tempers out 364/363 it allows [[minor minthmic chords]], and because it tempers out 847/845 it allows the [[cuthbert chords]], making it a very flexible harmonic system. The same is true of [[232edo]], the optimal patent val for 13-limit mystery. | |||
The 145c val provides a tuning for [[magic]] which is nearly identical to the [[POTE tuning]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|145|intervals=prime}} | |||
=== Octave stretch === | |||
145edo's approximated harmonics 3, 5, 11, 13, 17, 19, and 23 can be improved at the cost of a little worse 7, and moreover the approximated harmonic 13 can be brought to consistency, if slightly [[stretched and compressed tuning|compressing the octave]] is acceptable. [[375ed6]] is about at the sweet spot for this. | |||
=== Subsets and supersets === | |||
145edo contains [[5edo]] and [[29edo]] as subset edos. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list|Comma List]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve Stretch (¢) | |||
! colspan="2" | Tuning Error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| 1600000/1594323, {{monzo| 28 -3 -10 }} | |||
| {{Mapping| 145 230 337 }} | |||
| -0.695 | |||
| 0.498 | |||
| 6.02 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 5120/5103, 50421/50000 | |||
| {{Mapping| 145 230 337 407 }} | |||
| -0.472 | |||
| 0.578 | |||
| 6.99 | |||
|- | |||
| 2.3.5.7.11 | |||
| 441/440, 896/891, 3388/3375, 4375/4374 | |||
| {{Mapping| 145 230 337 407 502 }} | |||
| -0.561 | |||
| 0.547 | |||
| 6.61 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 196/195, 352/351, 364/363, 676/675, 4375/4374 | |||
| {{Mapping| 145 230 337 407 502 537 }} | |||
| -0.630 | |||
| 0.522 | |||
| 6.32 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 196/195, 256/255, 352/351, 364/363, 676/675, 1156/1155 | |||
| {{Mapping| 145 230 337 407 502 537 593 }} | |||
| -0.632 | |||
| 0.484 | |||
| 5.85 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 196/195, 256/255, 343/342, 352/351, 361/360, 364/363, 476/475 | |||
| {{Mapping| 145 230 337 407 502 537 593 616 }} | |||
| -0.565 | |||
| 0.486 | |||
| 5.87 | |||
|- | |||
| 2.3.5.7.11.13.17.19.23 | |||
| 196/195, 256/255, 276/275, 352/351, 361/360, 364/363, 460/459, 476/475 | |||
| {{Mapping| 145 230 337 407 502 537 593 616 656 }} | |||
| -0.519 | |||
| 0.476 | |||
| 5.75 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>Ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 2\145 | |||
| 16.55 | |||
| 100/99 | |||
| [[Quincy]] | |||
|- | |||
| 1 | |||
| 12\145 | |||
| 99.31 | |||
| 18/17 | |||
| [[Quinticosiennic]] | |||
|- | |||
| 1 | |||
| 14\145 | |||
| 115.86 | |||
| 77/72 | |||
| [[Countermiracle]] | |||
|- | |||
| 1 | |||
| 39\145 | |||
| 322.76 | |||
| 3087/2560 | |||
| [[Seniority]] / senator | |||
|- | |||
| 1 | |||
| 41\145 | |||
| 339.31 | |||
| 128/105 | |||
| [[Amity]] / catamite | |||
|- | |||
| 5 | |||
| 67\145<br>(9\145) | |||
| 554.48<br>(74.48) | |||
| 11/8<br>(25/24) | |||
| [[Trisedodge]] / [[countdown]] | |||
|- | |||
| 29 | |||
| 60\145<br>(2\145) | |||
| 496.55<br>(16.55) | |||
| 4/3<br>(100/99) | |||
| [[Mystery]] | |||
|} | |||
== Scales == | |||
* [[Magic7]] | |||
* [[Magic10]] | |||
* [[Magic13]] | |||
* [[Magic16]] | |||
* [[Magic19]] | |||
* [[Magic22]] | |||
== Music == | |||
; [[Chris Vaisvil]] ([http://www.chrisvaisvil.com/ site]) | |||
* [http://micro.soonlabel.com/magic/daily20120113-piano-magic16-.mp3 ''Chromatic piece in magic 16''] – magic[16] in 145edo tuning | |||
[[Category:Mystery]] | |||
[[Category:Pele]] | |||
[[Category:Magic]] | |||
[[Category:Listen]] |