Cuthbert chords: Difference between revisions

Wikispaces>xenwolf
**Imported revision 266575852 - Original comment: **
m Cleanup
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
'''Cuthbert chords''' are [[essentially tempered dyadic chord]]s tempered by the cuthbert comma, [[847/845]].
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
 
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-10-19 17:58:06 UTC</tt>.<br>
Cuthbert chords are of [[Dyadic chord/Pattern of essentially tempered chords|pattern 1a]] in the 2.5.7.11.13 [[subgroup]] [[13-odd-limit]], meaning that there are 3 triads, 6 tetrads and 2 pentads, for a total of 11 distinct chord structures.  
: The original revision id was <tt>266575852</tt>.<br>
 
: The revision comment was: <tt></tt><br>
The most basic cuthbert triad is a palindrome, consisting of two [[13/11]]'s making up [[7/5]], which implies tempering by cuthbert, the 847/845 comma. It is, in other words, the 847/845-tempered version of  
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
* 1–13/11–7/5 chord with steps of 13/11, 13/11, 10/7.  
<h4>Original Wikitext content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The **cuthbert triad** is an [[dyadic chord|essentially tempered dyadic triad]] which consists of two [[13_11|13/11]] thirds making up a (sort of) [[7_5|7/5]], which implies tempering by [[cuthbert]], the [[847_845|847/845]] comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the [[garibert tetrad]], which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-[[6_5|6/5]], leading to a garibert tempering of 1-13/11-7/5-[[5_3|5/3]]. Equal temperaments with cuthbert triads include [[29edo]], [[33edo]], [[37edo]], [[41edo]], [[46edo]], [[50edo]], [[53edo]], [[58edo]], [[70edo]], [[87edo]], [[94edo]], [[99edo]], [[103edo]], [[111edo]], [[128edo]], [[140edo]], [[149edo]], [[177edo]], [[190edo]], 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of [[13-limit]] [[Schismatic family#Garibaldi|garibaldi temperament]].</pre></div>
There is an inversely related pair which is more squeezed and fit for a sort of secundal harmony:
<h4>Original HTML content:</h4>
* 1–11/10–13/11 with steps of 11/10, 14/13, 22/13, and its inverse
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;cuthbert triad&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;cuthbert triad&lt;/strong&gt; is an &lt;a class="wiki_link" href="/dyadic%20chord"&gt;essentially tempered dyadic triad&lt;/a&gt; which consists of two &lt;a class="wiki_link" href="/13_11"&gt;13/11&lt;/a&gt; thirds making up a (sort of) &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt;, which implies tempering by &lt;a class="wiki_link" href="/cuthbert"&gt;cuthbert&lt;/a&gt;, the &lt;a class="wiki_link" href="/847_845"&gt;847/845&lt;/a&gt; comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the &lt;a class="wiki_link" href="/garibert%20tetrad"&gt;garibert tetrad&lt;/a&gt;, which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;, leading to a garibert tempering of 1-13/11-7/5-&lt;a class="wiki_link" href="/5_3"&gt;5/3&lt;/a&gt;. Equal temperaments with cuthbert triads include &lt;a class="wiki_link" href="/29edo"&gt;29edo&lt;/a&gt;, &lt;a class="wiki_link" href="/33edo"&gt;33edo&lt;/a&gt;, &lt;a class="wiki_link" href="/37edo"&gt;37edo&lt;/a&gt;, &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt;, &lt;a class="wiki_link" href="/46edo"&gt;46edo&lt;/a&gt;, &lt;a class="wiki_link" href="/50edo"&gt;50edo&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt;, &lt;a class="wiki_link" href="/58edo"&gt;58edo&lt;/a&gt;, &lt;a class="wiki_link" href="/70edo"&gt;70edo&lt;/a&gt;, &lt;a class="wiki_link" href="/87edo"&gt;87edo&lt;/a&gt;, &lt;a class="wiki_link" href="/94edo"&gt;94edo&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt;, &lt;a class="wiki_link" href="/103edo"&gt;103edo&lt;/a&gt;, &lt;a class="wiki_link" href="/111edo"&gt;111edo&lt;/a&gt;, &lt;a class="wiki_link" href="/128edo"&gt;128edo&lt;/a&gt;, &lt;a class="wiki_link" href="/140edo"&gt;140edo&lt;/a&gt;, &lt;a class="wiki_link" href="/149edo"&gt;149edo&lt;/a&gt;, &lt;a class="wiki_link" href="/177edo"&gt;177edo&lt;/a&gt;, &lt;a class="wiki_link" href="/190edo"&gt;190edo&lt;/a&gt;, 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Schismatic%20family#Garibaldi"&gt;garibaldi temperament&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
* 1–14/13–13/11 with steps of 14/13, 11/10, 22/13.  
 
They can be extended to the following tetrads, with two palindromic chords and two pairs of chords in inverse relationship. The palindromic tetrads are
* 1–11/10–13/11–13/10 chord with steps of 11/10, 14/13, 11/10, 20/13;
* 1–14/13–13/11–14/11 chord with steps of 14/13, 11/10, 14/13, 11/7.
 
The inversely related pairs of tetrads are
* 1–13/11–14/11–7/5 with steps of 13/11, 14/13, 11/10, 10/7, and its inverse
* 1–11/10–13/11–7/5 with steps of 11/10, 14/13, 13/11, 10/7;  
* 1–13/11–13/10–7/5 with steps of 13/11, 11/10, 14/13, 10/7, and its inverse
* 1–14/13–13/11–7/5 with steps of 14/13, 11/10, 13/11, 10/7.
 
Then there is an inversely related pair of pentads:
* 1–11/10–13/11–13/10–7/5 with steps of 11/10, 14/13, 11/10, 14/13, 10/7, and its inverse
* 1–14/13–13/11–14/11–7/5 with steps of 14/13, 11/10, 14/13, 11/10, 10/7.
 
Equal temperaments with cuthbert triads include {{Optimal ET sequence| 29, 33, 37, 41, 46, 50, 53, 58, 70, 87, 94, 99, 103, 111, 128, 140, 149, 177, 190, 198, 205, 227, 264, 284 and 388 }}.
 
== Garibert tetrad ==
The first cuthbert triad can be extended to the '''garibert tetrad''', which is the {[[275/273]], 847/845} garibert tempering of a tetrad,  
* 1–13/11–7/5–[[5/3]] with steps of size 13/11, 13/11, 13/11, [[6/5]].  
 
Equal temperaments with the garibert tetrad include {{Optimal ET sequence| 16, 29, 37, 41, 53 and 94 }}; and it is a characteristic chord of [[13-limit]] [[garibaldi temperament]].
 
[[Category:13-odd-limit chords]]
[[Category:Essentially tempered chords]]
[[Category:Triads]]
[[Category:Tetrads]]
[[Category:Pentads]]
[[Category:Cuthbert]]
[[Category:Garibaldi]]
[[Category:Garibert]]
[[Category:Gassormic]]