282edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 514613994 - Original comment: ** |
m Cleanup and update |
||
(18 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
282edo is the smallest edo [[consistency|distinctly consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] ({{nowrap| 282 {{=}} 3 × 94 }}), as well as [[11/10]] and [[20/17]] ([[support]]ing the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29. | |||
The equal temperament [[tempering out|tempers out]] [[6144/6125]] (porwell comma), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and [[5632/5625]] in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]]. | |||
It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|282|columns=11}} | |||
=== Subsets and supersets === | |||
Since 282 factors into primes as {{nowrap| 2 × 3 × 47 }}, 282edo has subset edos {{EDOs| 2, 3, 47, 94, and 141 }}. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| {{Monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }} | |||
| {{Mapping| 282 447 655 }} | |||
| −0.1684 | |||
| 0.1671 | |||
| 3.93 | |||
|- | |||
| 2.3.5.7 | |||
| 6144/6125, 118098/117649, 250047/250000 | |||
| {{Mapping| 282 447 655 792 }} | |||
| −0.2498 | |||
| 0.2020 | |||
| 4.75 | |||
|- | |||
| 2.3.5.7.11 | |||
| 540/539, 4000/3993, 5632/5625, 137781/137500 | |||
| {{Mapping| 282 447 655 792 976 }} | |||
| −0.3081 | |||
| 0.2151 | |||
| 5.06 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575 | |||
| {{Mapping| 282 447 655 792 976 1044 }} | |||
| −0.3480 | |||
| 0.2156 | |||
| 5.07 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197 | |||
| {{Mapping| 282 447 655 792 976 1044 1153 }} | |||
| −0.3481 | |||
| 0.1996 | |||
| 4.69 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573 | |||
| {{Mapping| 282 447 655 792 976 1044 1153 1198 }} | |||
| −0.3152 | |||
| 0.2061 | |||
| 4.84 | |||
|- | |||
| 2.3.5.7.11.13.17.19.23 | |||
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287 | |||
| {{Mapping| 282 447 655 792 976 1044 1153 1198 1276 }} | |||
| −0.3173 | |||
| 0.1944 | |||
| 4.57 | |||
|} | |||
* 282et has a lower relative error than any previous equal temperaments in the 23-limit, past [[270edo|270]] and before [[311edo|311]]. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 13\282 | |||
| 55.32 | |||
| 33/32 | |||
| [[Escapade]] | |||
|- | |||
| 1 | |||
| 133\282 | |||
| 565.96 | |||
| 4096/2835 | |||
| [[Alphatrident]] (7-limit) | |||
|- | |||
| 2 | |||
| 13\282 | |||
| 55.32 | |||
| 33/32 | |||
| [[Septisuperfourth]] | |||
|- | |||
| 2 | |||
| 43\282 | |||
| 182.98 | |||
| 10/9 | |||
| [[Unidecmic]] | |||
|- | |||
| 3 | |||
| 33\282 | |||
| 140.43 | |||
| 243/224 | |||
| [[Septichrome]] | |||
|- | |||
| 3 | |||
| 37\282 | |||
| 157.45 | |||
| 35/32 | |||
| [[Nessafof]] (7-limit) | |||
|- | |||
| 6 | |||
| 51\282<br>(4\282) | |||
| 217.02<br>(17.02) | |||
| 17/15<br>(105/104) | |||
| [[Stearnscape]] | |||
|- | |||
| 6 | |||
| 80\282<br>(14\282) | |||
| 340.43<br>(59.57) | |||
| 162/133<br>(88/85) | |||
| [[Semiseptichrome]] | |||
|- | |||
| 6 | |||
| 117\282<br>(23\282) | |||
| 497.87<br>(97.87) | |||
| 4/3<br>(128/121) | |||
| [[Sextile]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Jupiter]] | |||
[[Category:Septisuperfourth]] |