282edo: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
m Cleanup and update
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|282}}
{{ED intro}}


== Theory ==
== Theory ==
282edo is the smallest edo [[consistency|distinctly consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] (282 = 3 × 94), as well as [[11/10]] and [[20/17]] (supporting the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29.  
282edo is the smallest edo [[consistency|distinctly consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] ({{nowrap| 282 {{=}} 3 × 94 }}), as well as [[11/10]] and [[20/17]] ([[support]]ing the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29.  


The equal temperament [[tempering out|tempers out]] [[6144/6125]] (porwell), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and [[5632/5625]] in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].  
The equal temperament [[tempering out|tempers out]] [[6144/6125]] (porwell comma), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and [[5632/5625]] in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].  


It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit.  
It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit.  
Line 13: Line 13:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 282 factors into {{factorization|282}}, 282edo has subset edos {{EDOs| 2, 3, 47, 94, and 141 }}.  
Since 282 factors into primes as {{nowrap| 2 × 3 × 47 }}, 282edo has subset edos {{EDOs| 2, 3, 47, 94, and 141 }}.  


== Regular temperament properties ==
== Regular temperament properties ==
Line 21: Line 21:
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 28: Line 28:
|-
|-
| 2.3.5
| 2.3.5
| {{monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }}
| {{Monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }}
| {{mapping| 282 447 655 }}
| {{Mapping| 282 447 655 }}
| −0.1684
| −0.1684
| 0.1671
| 0.1671
Line 36: Line 36:
| 2.3.5.7
| 2.3.5.7
| 6144/6125, 118098/117649, 250047/250000
| 6144/6125, 118098/117649, 250047/250000
| {{mapping| 282 447 655 792 }}
| {{Mapping| 282 447 655 792 }}
| −0.2498
| −0.2498
| 0.2020
| 0.2020
Line 43: Line 43:
| 2.3.5.7.11
| 2.3.5.7.11
| 540/539, 4000/3993, 5632/5625, 137781/137500
| 540/539, 4000/3993, 5632/5625, 137781/137500
| {{mapping| 282 447 655 792 976 }}
| {{Mapping| 282 447 655 792 976 }}
| −0.3081
| −0.3081
| 0.2151
| 0.2151
Line 50: Line 50:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575
| {{mapping| 282 447 655 792 976 1044 }}
| {{Mapping| 282 447 655 792 976 1044 }}
| −0.3480
| −0.3480
| 0.2156
| 0.2156
Line 57: Line 57:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197
| {{mapping| 282 447 655 792 976 1044 1153 }}
| {{Mapping| 282 447 655 792 976 1044 1153 }}
| −0.3481
| −0.3481
| 0.1996
| 0.1996
Line 64: Line 64:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573
| {{mapping| 282 447 655 792 976 1044 1153 1198 }}
| {{Mapping| 282 447 655 792 976 1044 1153 1198 }}
| −0.3152
| −0.3152
| 0.2061
| 0.2061
Line 71: Line 71:
| 2.3.5.7.11.13.17.19.23
| 2.3.5.7.11.13.17.19.23
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287
| {{mapping| 282 447 655 792 976 1044 1153 1198 1276 }}
| {{Mapping| 282 447 655 792 976 1044 1153 1198 1276 }}
| −0.3173
| −0.3173
| 0.1944
| 0.1944
Line 82: Line 82:
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Periods<br />per 8ve
! Periods<br>per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br />ratio*
! Associated<br>ratio*
! Temperaments
! Temperaments
|-
|-
Line 98: Line 98:
| 565.96
| 565.96
| 4096/2835
| 4096/2835
| [[Trident]] (282ef)
| [[Alphatrident]] (7-limit)
|-
|-
| 2
| 2
Line 125: Line 125:
|-
|-
| 6
| 6
| 51\282<br />(4\282)
| 51\282<br>(4\282)
| 217.02<br />(17.02)
| 217.02<br>(17.02)
| 17/15<br />(105/104)
| 17/15<br>(105/104)
| [[Stearnscape]]
| [[Stearnscape]]
|-
|-
| 6
| 6
| 80\282<br />(14\282)
| 80\282<br>(14\282)
| 340.43<br />(59.57)
| 340.43<br>(59.57)
| 162/133<br />(88/85)
| 162/133<br>(88/85)
| [[Semiseptichrome]]
| [[Semiseptichrome]]
|-
|-
| 6
| 6
| 117\282<br />(23\282)
| 117\282<br>(23\282)
| 497.87<br />(97.87)
| 497.87<br>(97.87)
| 4/3<br />(128/121)
| 4/3<br>(128/121)
| [[Sextile]]
| [[Sextile]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct


[[Category:Jupiter]]
[[Category:Jupiter]]
[[Category:Septisuperfourth]]
[[Category:Septisuperfourth]]