836edo: Difference between revisions
Created page with "{{Infobox ET}} {{EDO intro|836}} 836edo is a strong 11-limit system, having the lowest absolute error beating 612edo. 836edo is a tuning for the enneadecal in the 7..." |
m changed EDO intro to ED intro |
||
(12 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
836edo is a strong 11-limit system, having the lowest absolute error beating [[612edo]]. | == Theory == | ||
836edo is a strong 11-limit system, having the record of lowest absolute error and beating [[612edo]]. | |||
As an equal temperament, it [[tempering out|tempers out]] the [[counterschisma]] and the [[enneadeca]] in the 5-limit; [[4375/4374]], [[703125/702464]] in the 7-limit; [[3025/3024]] and [[9801/9800]] in the 11-limit. It supports [[enneadecal]] in the 7-limit as well as [[hemienneadecal]] in the 11-limit. It also tunes [[orga]] and [[quasithird]]. In addition, it is divisible by 44 and in light of that it tunes [[ruthenium]] in the 7-limit and also 11-limit. | |||
Extending it to the 13-limit requires choosing which mapping one wants to use, as both are nearly equally far off the mark. Using the [[patent val]], it tempers out [[2200/2197]], [[4096/4095]], 31250/31213 in the 13-limit; and [[1275/1274]], [[2500/2499]], [[2601/2600]] in the 17-limit. It provides the [[optimal patent val]] for 13-limit quasithird. Using the 836f [[val]], it tempers out [[1716/1715]], [[2080/2079]], 15379/15360 in the 13-limit; and [[2431/2430]], 2500/2499, [[4914/4913]], [[5832/5831]], 11271/11264 in the 17-limit. It gives a good tuning for 13-limit orga. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{ | {{Harmonics in equal|836}} | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
836edo has subset edos {{EDOs| | Since 836 factors into 2<sup>2</sup> × 11 × 19, 836edo has subset edos {{EDOs| 2, 4, 11, 19, 22, 38, 44, 76, 209, 418 }}. [[1672edo]], which doubles it, provides a good correction for [[harmonic]] [[13/1|13]]. | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -1325 836 }} | |||
| {{mapping| 836 1325 }} | |||
| +0.0130 | |||
| 0.0130 | |||
| 0.90 | |||
|- | |||
| 2.3.5 | |||
| {{monzo| -14 -19 19 }}, {{monzo| -69 45 -1 }} | |||
| {{mapping| 836 1325 1941 }} | |||
| +0.0358 | |||
| 0.0340 | |||
| 2.37 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 703125/702464, {{monzo| 41 -4 2 -14 }} | |||
| {{mapping| 836 1325 1941 2347 }} | |||
| +0.0203 | |||
| 0.0399 | |||
| 2.78 | |||
|- | |||
| 2.3.5.7.11 | |||
| 3025/3024, 4375/4374, 234375/234256, {{monzo| 22 -4 2 -6 -1 }} | |||
| {{mapping| 836 1325 1941 2347 2892 }} | |||
| +0.0233 | |||
| 0.0362 | |||
| 2.52 | |||
|- | |||
| 2.3.5.7.11.17 | |||
| 2500/2499, 3025/3024, 4375/4374, 57375/57344, 108086/108045 | |||
| {{mapping| 836 1325 1941 2347 2892 3417 }} | |||
| +0.0264 | |||
| 0.0337 | |||
| 2.35 | |||
|- style="border-top: double;" | |||
| 2.3.5.7.11.13 | |||
| 2200/2197, 3025/3024, 4096/4095, 4375/4374, 31250/31213 | |||
| {{mapping| 836 1325 1941 2347 2892 3094 }} (836) | |||
| −0.0085 | |||
| 0.0785 | |||
| 5.47 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 1275/1274, 2200/2197, 2500/2499, 3025/3024, 4096/4095, 4375/4374 | |||
| {{mapping| 836 1325 1941 2347 2892 3094 3417 }} (836) | |||
| −0.0014 | |||
| 0.0747 | |||
| 5.21 | |||
|- style="border-top: double;" | |||
| 2.3.5.7.11.13 | |||
| 1716/1715, 2080/2079, 3025/3024, 15379/15360, 234375/234256 | |||
| {{mapping| 836 1325 1941 2347 2892 3093 }} (836f) | |||
| +0.0561 | |||
| 0.0805 | |||
| 5.60 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4914/4913, 11271/11264 | |||
| {{mapping| 836 1325 1941 2347 2892 3093 3417 }} (836f) | |||
| +0.0541 | |||
| 0.0747 | |||
| 5.20 | |||
|} | |||
* 836et is notable in the 11-limit with a lower absolute error than any previous equal temperaments, past [[612edo|612]] and before [[1084edo|1084]]. | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 347\836 | |||
| 498.09 | |||
| 4/3 | |||
| [[Counterschismic]] | |||
|- | |||
| 2 | |||
| 161\836 | |||
| 231.10 | |||
| 8/7 | |||
| [[Orga]] (836f) | |||
|- | |||
| 2 | |||
| 265\836<br />(56\836) | |||
| 380.38<br />(80.38) | |||
| 81/65<br />(22/21) | |||
| [[Quasithird]] (836) | |||
|- | |||
| 19 | |||
| 347\836<br />(5\836) | |||
| 498.09<br />(7.18) | |||
| 4/3<br />(225/224) | |||
| [[Enneadecal]] | |||
|- | |||
| 22 | |||
| 347\836<br />(5\836) | |||
| 498.09<br />(7.18) | |||
| 4/3<br />({{monzo| 16 -13 2 }}) | |||
| [[Major arcana]] | |||
|- | |||
| 38 | |||
| 347\836<br />(5\836) | |||
| 498.09<br />(7.18) | |||
| 4/3<br />(225/224) | |||
| [[Hemienneadecal]] | |||
|- | |||
| 44 | |||
| 347\836<br />(5\836) | |||
| 498.09<br />(7.18) | |||
| 4/3<br />(18375/18304) | |||
| [[Ruthenium]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Quasithird]] |