764edo: Difference between revisions
→Regular temperament properties: +list of temperaments |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(12 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
764edo is a very strong 17-limit system | 764edo is a very strong 17-limit system, [[consistent]] to the [[17-odd-limit]] or the no-19 no-29 [[41-odd-limit]]. It is the fourteenth [[zeta integral edo]]. In the 5-limit it [[tempering out|tempers out]] the hemithirds comma, {{monzo| 38 -2 -15 }}; in the 7-limit [[4375/4374]]; in the 11-limit [[3025/3024]] and [[9801/9800]]; in the 13-limit [[1716/1715]], [[2080/2079]], [[4096/4095]], [[4225/4224]], [[6656/6655]] and [[10648/10647]]; and in the 17-limit [[2431/2430]], [[2500/2499]], [[4914/4913]] and [[5832/5831]]. It provides the [[optimal patent val]] for the [[abigail]] temperament in the 11-limit. | ||
In higher limits, it is a strong no-19 and no-29 37-limit tuning, and an exceptional 2.11.23.31.37 subgroup system, with errors less than 2%. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|764|columns= | {{Harmonics in equal|764|columns=15}} | ||
=== Subsets and supersets === | |||
Since 764 factors into {{factorization|764}}, 764edo has subset edos 2, 4, 191, and 382. In addition, one step of 764edo is exactly 22 [[jinn]]s ([[16808edo|22\16808]]). | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 21: | Line 27: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 1211 -764 }} | | {{monzo| 1211 -764 }} | ||
| | | {{mapping| 764 1211 }} | ||
| | | −0.0439 | ||
| 0.0439 | | 0.0439 | ||
| 2.80 | | 2.80 | ||
Line 28: | Line 34: | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| 38 -2 -15 }}, {{monzo| 25 -48 22 }} | | {{monzo| 38 -2 -15 }}, {{monzo| 25 -48 22 }} | ||
| | | {{mapping| 764 1211 1774 }} | ||
| | | −0.0399 | ||
| 0.0363 | | 0.0363 | ||
| 2.31 | | 2.31 | ||
Line 35: | Line 41: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 4375/4374, 52734375/52706752, {{monzo| 31 -6 -2 -6 }} | | 4375/4374, 52734375/52706752, {{monzo| 31 -6 -2 -6 }} | ||
| | | {{mapping| 764 1211 1774 2145 }} | ||
| | | −0.0552 | ||
| 0.0412 | | 0.0412 | ||
| 2.62 | | 2.62 | ||
Line 42: | Line 48: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 3025/3024, 4375/4374, 131072/130977, 35156250/35153041 | | 3025/3024, 4375/4374, 131072/130977, 35156250/35153041 | ||
| | | {{mapping| 764 1211 1774 2145 2643 }} | ||
| | | −0.0436 | ||
| 0.0435 | | 0.0435 | ||
| 2.77 | | 2.77 | ||
Line 49: | Line 55: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 1716/1715, 2080/2079, 3025/3024, 4096/4095, 10549994/10546875 | | 1716/1715, 2080/2079, 3025/3024, 4096/4095, 10549994/10546875 | ||
| | | {{mapping| 764 1211 1774 2145 2643 2827 }} | ||
| | | −0.0267 | ||
| 0.0548 | | 0.0548 | ||
| 3.49 | | 3.49 | ||
Line 56: | Line 62: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4096/4095, 4914/4913 | | 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4096/4095, 4914/4913 | ||
| | | {{mapping| 764 1211 1774 2145 2643 2827 3123 }} | ||
| | | −0.0327 | ||
| 0.0528 | | 0.0528 | ||
| 3.36 | | 3.36 | ||
|- | |||
| 2.3.5.7.11.13.17.23 | |||
| 1716/1715, 2080/2079, 2024/2023, 2431/2430, 2500/2499, 3520/3519, 4096/4095 | |||
| {{mapping| 764 1211 1774 2145 2643 2827 3123 3456 }} | |||
| −0.0286 | |||
| 0.0506 | |||
| 3.22 | |||
|} | |} | ||
764et | * 764et has lower absolute errors than any previous equal temperaments in the 13- and 17-limit. In the 13-limit it beats [[684edo|684]] and is only bettered by [[935edo|935]]. In the 17-limit it beats [[742edo|742]] and is only bettered by [[814edo|814]]. | ||
* It is best at the no-19 23-limit, where it has a lower relative error than any previous equal temperaments, past [[494edo|494]] and before [[1578edo|1578]]. | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br> | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 91: | Line 106: | ||
|- | |- | ||
| 2 | | 2 | ||
| 277\764<br>(105\764) | | 277\764<br />(105\764) | ||
| 435.08<br>(164.92) | | 435.08<br />(164.92) | ||
| 9/7<br>(11/10) | | 9/7<br />(11/10) | ||
| [[Semisupermajor]] | | [[Semisupermajor]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Abigail]] | [[Category:Abigail]] |