144edo: Difference between revisions
Notes on it's properties as part of the fibonacci sequence. |
m changed EDO intro to ED intro |
||
(24 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
[[Category: | 144edo's step size is called a '''farab''' when used as an [[interval size unit]].<ref>http://tonalsoft.com/enc/f/farab.aspx</ref> | ||
== Theory == | |||
144edo is closely related to [[72edo]], but the [[patent val]]s differ on the mapping for [[13/1|13]] and [[17/1|17]]. It is [[enfactoring|enfactored]] in the 11-limit, [[tempering out]] [[225/224]], [[243/242]], [[385/384]], [[441/440]], and [[4000/3993]]. Using the [[patent val]], it tempers out [[847/845]], [[1188/1183]], 1701/1690, 1875/1859, and [[4225/4224]] in the 13-limit. It [[support]]s [[hemisecordite]], the {{nowrap|41 & 103}} temperament, though [[103edo]] is better suited for this purpose. | |||
Although the patent val comes out on top accuracy in the 13-limit, in the 17-limit 144 falls behind to 144g. The 144g val tempers out [[170/169]], [[289/288]], [[375/374]], [[561/560]], [[595/594]]. It supports [[semihemisecordite]], the {{nowrap|62 & 82f}} temperament. The patent val tempers out [[273/272]], [[715/714]], [[833/832]], 875/867, 891/884, and [[1275/1274]], supporting 17-limit hemisecordite. In the 19-limit the patent val tempers out 210/209, 325/323, [[343/342]], [[363/361]], [[400/399]], [[513/512]], and 665/663. | |||
Besides all these, the 144eff val supports hemimiracle, the {{nowrap|41 & 103e}} temperament. 144ee supports oracle, the {{nowrap|31 & 113e}} temperament. 144cf supports necromanteion, the {{nowrap|31 & 113cf}} temperament. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|144}} | |||
=== Subsets and supersets === | |||
144edo is the square of world-dominant [[12edo]]. | |||
Since 144 factors into 2<sup>4</sup> × 3<sup>2</sup>, 144edo has subset edos {{EDOs| 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, and 72 }}. | |||
=== Approximation to φ === | |||
144edo is the 12th Fibonacci edo. As a consequence of being a Fibonacci edo, it can produce extremely precise approximation of the [[Logarithmic phi|logarithmic golden ratio]] at 89 steps. Coincidentally, it ''also'' excellently represents the [[Acoustic phi|acoustic golden ratio]] by 100 steps. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 225/224, 243/242, 385/384, 847/845, 1875/1859 | |||
| {{mapping| 144 228 334 404 498 533 }} | |||
| +0.560 | |||
| 0.595 | |||
| 7.13 | |||
|- style="border-top: double;" | |||
| 2.3.5.7.11.13.17 | |||
| 225/224, 243/242, 273/272, 325/324, 847/845, 875/867 | |||
| {{mapping| 144 228 334 404 498 533 589 }} (144) | |||
| +0.362 | |||
| 0.734 | |||
| 8.80 | |||
|- style="border-top: double;" | |||
| 2.3.5.7.11.13.17 | |||
| 170/169, 225/224, 243/242, 289/288, 375/374, 385/384 | |||
| {{mapping| 144 228 334 404 498 533 588 }} (144g) | |||
| +0.653 | |||
| 0.596 | |||
| 7.15 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 7\144 | |||
| 58.33 | |||
| 27/26 | |||
| [[Hemisecordite]] (144) | |||
|- | |||
| 2 | |||
| 7\144 | |||
| 58.33 | |||
| 27/26 | |||
| [[Semihemisecordite]] (144g) | |||
|- | |||
| 12 | |||
| 1\144 | |||
| 8.33 | |||
| 129/128 | |||
| [[Substitute harmonic#Dotcom|Dotcom]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Hideya]] | |||
* [https://www.youtube.com/watch?v=p71oF-A9gF8 ''Like an endless uphill''] (2022) | |||
== References == | |||
<references /> | |||
== External links == | |||
* [http://tonalsoft.com/enc/number/144edo.aspx 144-tone equal-temperament / 144-edo] on [[Tonalsoft Encyclopedia]] | |||
[[Category:Listen]] |