24ed7: Difference between revisions
Created page with "'''Division of the 7th harmonic into 24 equal parts''' (24ed7) is related to the quanic temperament, which is a cluster temperament wit..." Tags: Mobile edit Mobile web edit |
mNo edit summary |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
'''[[Ed7|Division of the 7th harmonic]] into 24 equal parts''' (24ed7) is related to the [[Hemifamity temperaments|quanic temperament]], which | {{Infobox ET}} | ||
'''[[Ed7|Division of the 7th harmonic]] into 24 equal parts''' (24ed7) is related to the [[Hemifamity temperaments|quanic temperament]], which tempers out 352/351, 540/539, 729/728, and 1331/1323 in the 13-limit; 352/351, 442/441, 540/539, 561/560, and 715/714 in the 17-limit. The step size is about 140.3677 cents, corresponding to 8.5490 [[edo]]. | |||
{| class="wikitable" | == Intervals == | ||
{| class="wikitable mw-collapsible" | |||
|+ Intervals of 24ed7 | |||
|- | |- | ||
! | degree | ! | degree | ||
Line 25: | Line 28: | ||
| | 3 | | | 3 | ||
| | 421.1032 | | | 421.1032 | ||
| | [[14/11]], 23/18, [[32/25]] | | | [[14/11]], 65/51, 51/40, 23/18, [[32/25]] | ||
| | | | | | ||
|- | |- | ||
Line 70: | Line 73: | ||
| | 12 | | | 12 | ||
| | 1684.4130 | | | 1684.4130 | ||
| | | | | 119/45, 45/17 | ||
| | | | | | ||
|- | |- | ||
Line 85: | Line 88: | ||
| | 15 | | | 15 | ||
| | 2105.5162 | | | 2105.5162 | ||
| | [[27/16|27/8]] | | | 91/27, [[27/16|27/8]] | ||
| | | | | | ||
|- | |- | ||
Line 95: | Line 98: | ||
| | 17 | | | 17 | ||
| | 2386.2517 | | | 2386.2517 | ||
| | 119/30, | | | 119/30, 143/36 | ||
| | | | | | ||
|- | |- | ||
| | 18 | | | 18 | ||
| | 2526.6194 | | | 2526.6194 | ||
| | | | | [[14/13|56/13]] | ||
| | | | | | ||
|- | |- | ||
Line 134: | Line 137: | ||
|} | |} | ||
== | == Harmonics == | ||
{{Harmonics in equal|24|7|1}} | |||
{{Harmonics in equal|24|7|1|collapsed=1|start=12}} | |||
[[ | == Music == | ||
[ | ; [[Ambient Esoterica]] | ||
* [https://www.youtube.com/watch?v=qVB1UFLMO4U ''SQRT(7):1 | Irrational Octave Microtones''] (2023) |