56edt: Difference between revisions
No edit summary |
m Split harms into 2 tables, add intervals |
||
Line 2: | Line 2: | ||
The 56 equal division of 3, the tritave, divides it into 56 equal parts of 33.963 cents each, corresponding to 35.332 edo. It tempers out 245/243 in the 7-limit, 1331/1323 in the 11-limit and 275/273 in the 13-limit. It [[support]]s the 3.5.7.11.13 temperament with mapping [<1 5 0 1 10|, <0 -6 3 2 -13|]. 56edt is the twelfth [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|no-twos zeta peak edt]]. | The 56 equal division of 3, the tritave, divides it into 56 equal parts of 33.963 cents each, corresponding to 35.332 edo. It tempers out 245/243 in the 7-limit, 1331/1323 in the 11-limit and 275/273 in the 13-limit. It [[support]]s the 3.5.7.11.13 temperament with mapping [<1 5 0 1 10|, <0 -6 3 2 -13|]. 56edt is the twelfth [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|no-twos zeta peak edt]]. | ||
{{Harmonics in equal|56|3|1|intervals=odd| | == Harmonics == | ||
{{Harmonics in equal | |||
| steps = 56 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = odd | |||
}} | |||
{{Harmonics in equal | |||
| steps = 56 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = odd | |||
}} | |||
== Intervals == | |||
{{Interval table}} |