Das Goldene Tonsystem: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 146329239 - Original comment: **
m Displaytitle
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{DISPLAYTITLE:''Das Goldene Tonsystem''}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
'''''[http://d-nb.info/361092458 Das Goldene Tonsystem als Fundament der Theoretischen Akustik]''''' is a book of the Danish music theoretician (music reformer and visionary) '''Thorvald Kornerup''', written in German and published in Copenhagen in 1935, that describes [[golden meantone]].
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-06-01 17:11:24 UTC</tt>.<br>
: The original revision id was <tt>146329239</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**[[http://d-nb.info/361092458|Das Goldene Tonsystem]]**
als Fundament der Theoretischen Akustik


is a book of the danish music theoretician (music reformer and visionary) Thorvald Kornerup, written in German and published in Copenhagen in 1935.
[[Category:Golden meantone]]
 
[[Category:Resources]]
The system is based on the paradigm that the relation between whole and half tone intervals should be the [[http://en.wikipedia.org/wiki/Golden_ratio|Golden Ratio]]
 
[[math]]
\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,
[[math]]
 
Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.
 
== Construction ==
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13... you get the following approximations:
1, 1 -&gt; [[7edo]]
1, 2 -&gt; [[12edo]]
2, 3 -&gt; [[19edo]]
3, 5 -&gt; [[31edo]]
5, 8 -&gt; [[50edo]]
 
== Evaluation ==
 
Graham Breed [[http://x31eq.com/meantone.htm|writes]]: //I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.//
 
== Listening ==
 
[[http://www.io.com/~hmiller/midi/canon-golden.mid|An acoustic experience]] - Kornerup himself had no chance to have it - is contained in the [[Warped canon]] collection.</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Das Goldene Tonsystem&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;&lt;a class="wiki_link_ext" href="http://d-nb.info/361092458" rel="nofollow"&gt;Das Goldene Tonsystem&lt;/a&gt;&lt;/strong&gt;&lt;br /&gt;
als Fundament der Theoretischen Akustik&lt;br /&gt;
&lt;br /&gt;
is a book of the danish music theoretician (music reformer and visionary) Thorvald Kornerup, written in German and published in Copenhagen in 1935.&lt;br /&gt;
&lt;br /&gt;
The system is based on the paradigm that the relation between whole and half tone intervals should be the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Golden_ratio" rel="nofollow"&gt;Golden Ratio&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:1:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Construction"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:1 --&gt; Construction &lt;/h2&gt;
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13... you get the following approximations:&lt;br /&gt;
1, 1 -&amp;gt; &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;&lt;br /&gt;
1, 2 -&amp;gt; &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;&lt;br /&gt;
2, 3 -&amp;gt; &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;&lt;br /&gt;
3, 5 -&amp;gt; &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;&lt;br /&gt;
5, 8 -&amp;gt; &lt;a class="wiki_link" href="/50edo"&gt;50edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Evaluation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt; Evaluation &lt;/h2&gt;
&lt;br /&gt;
Graham Breed &lt;a class="wiki_link_ext" href="http://x31eq.com/meantone.htm" rel="nofollow"&gt;writes&lt;/a&gt;: &lt;em&gt;I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Listening"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt; Listening &lt;/h2&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.io.com/~hmiller/midi/canon-golden.mid" rel="nofollow"&gt;An acoustic experience&lt;/a&gt; - Kornerup himself had no chance to have it - is contained in the &lt;a class="wiki_link" href="/Warped%20canon"&gt;Warped canon&lt;/a&gt; collection.&lt;/body&gt;&lt;/html&gt;</pre></div>