102edo: Difference between revisions
No edit summary |
m Primes table |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
'''102edo''' is the [[Equal_division_of_the_octave|equal division of the octave]] into 102 steps of size 11.765 [[cent]]s each. In the [[5-limit|5-limit]] it [[tempering_out|tempers out]] the same [[comma]]s (2048/2025, 15625/15552, 20000/19683) as [[34edo|34edo]]. In the [[7-limit|7-limit]] it tempers out 686/675 and 1029/1024; in the [[11-limit|11-limit]] 385/384, 441/440 and 4000/3993; in the [[13-limit|13-limit]] 91/90 and 169/168; in the [[17-limit|17-limit]] 136/135 and 154/153; and in the [[19-limit|19-limit]] 133/132 and 190/189. It is the [[Optimal_patent_val|optimal patent val]] for 13-limit [[Diaschismic_family#Echidnic|echidnic temperament]], and the rank five temperament tempering out 91/90. | '''102edo''' is the [[Equal_division_of_the_octave|equal division of the octave]] into 102 steps of size 11.765 [[cent]]s each. In the [[5-limit|5-limit]] it [[tempering_out|tempers out]] the same [[comma]]s (2048/2025, 15625/15552, 20000/19683) as [[34edo|34edo]]. In the [[7-limit|7-limit]] it tempers out 686/675 and 1029/1024; in the [[11-limit|11-limit]] 385/384, 441/440 and 4000/3993; in the [[13-limit|13-limit]] 91/90 and 169/168; in the [[17-limit|17-limit]] 136/135 and 154/153; and in the [[19-limit|19-limit]] 133/132 and 190/189. It is the [[Optimal_patent_val|optimal patent val]] for 13-limit [[Diaschismic_family#Echidnic|echidnic temperament]], and the rank five temperament tempering out 91/90. | ||
=== Prime harmonics === | |||
{{Primes in edo|102}} | |||
===13-limit Echidnic=== | ===13-limit Echidnic=== |