7ed11
Jump to navigation
Jump to search
Prime factorization
7 (prime)
Step size
593.045¢
Octave
2\7ed11 (1186.09¢)
(convergent)
Twelfth
3\7ed11 (1779.14¢)
(semiconvergent)
Consistency limit
4
Distinct consistency limit
3
← 6ed11 | 7ed11 | 8ed11 → |
(convergent)
(semiconvergent)
7ED11 is the equal division of the 11th harmonic into seven parts of 593.0454 cents each. It is related to the temperament which tempers out 256/255, 273/272, 364/363, 441/440, and 1690/1683 in the 17-limit, which is supported by 2edo, 87edo, and 89edo.
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 593.0454 | 45/32, 24/17 | |
2 | 1186.0908 | 240/121, 143/72 | |
3 | 1779.1363 | 14/5 | |
4 | 2372.1817 | 55/14 | |
5 | 2965.2271 | 72/13 | |
6 | 3558.2725 | 187/24, 352/45 | |
7 | 4151.3179 | exact 11/1 | undecimal fourth plus three octaves |
Related temperament
11-limit 87&89
Commas: 441/440, 3388/3375, 16384/16335
POTE generator: ~45/32 = 593.168
Mapping: [<1 9 -13 -14 0|, <0 -15 31 34 7|]
EDOs: 2, 87, 89, 176, 263
13-limit 87&89
Commas: 364/363, 441/440, 2197/2187, 3388/3375
POTE generator: ~45/32 = 593.156
Mapping: [<1 9 -13 -14 0 21|, <0 -15 31 34 7 -35|]
EDOs: 2, 87, 89, 176, 263
17-limit 87&89
Commas: 256/255, 273/272, 364/363, 441/440, 2025/2023
POTE generator: ~24/17 = 593.165
Mapping: [<1 9 -13 -14 0 21 12|, <0 -15 31 34 7 -35 -16|]
EDOs: 2, 87, 89, 176g