37ed5/2

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 36ed5/2 37ed5/2 38ed5/2 →
Prime factorization 37 (prime)
Step size 42.8733¢ 
Octave 28\37ed5/2 (1200.45¢)
(convergent)
Twelfth 44\37ed5/2 (1886.43¢)
Consistency limit 6
Distinct consistency limit 6

37 equal divisions of 5/2 (abbreviated 37ed5/2) is a nonoctave tuning system that divides the interval of 5/2 into 37 equal parts of about 42.9⁠ ⁠¢ each. Each step represents a frequency ratio of (5/2)1/37, or the 37th root of 5/2.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 42.9
2 85.7 20/19, 21/20, 22/21
3 128.6 14/13
4 171.5 11/10, 21/19
5 214.4 17/15, 25/22, 26/23
6 257.2 22/19, 29/25
7 300.1 19/16, 25/21
8 343 28/23
9 385.9 5/4
10 428.7
11 471.6 21/16, 25/19, 29/22
12 514.5
13 557.4 11/8, 29/21
14 600.2 17/12, 24/17
15 643.1 16/11, 29/20
16 686
17 728.8 29/19
18 771.7 25/16
19 814.6 8/5
20 857.5 23/14
21 900.3
22 943.2 19/11
23 986.1 23/13
24 1029 20/11, 29/16
25 1071.8 13/7
26 1114.7 19/10, 21/11
27 1157.6
28 1200.5 2/1
29 1243.3
30 1286.2 21/10
31 1329.1 28/13
32 1371.9 11/5
33 1414.8 25/11
34 1457.7
35 1500.6 19/8
36 1543.4
37 1586.3 5/2

Harmonics

Approximation of harmonics in 37ed5/2
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.5 -15.5 +0.9 +0.5 -15.1 +18.2 +1.4 +11.8 +0.9 +7.4 -14.6
Relative (%) +1.1 -36.2 +2.1 +1.1 -35.2 +42.4 +3.2 +27.6 +2.1 +17.3 -34.1
Steps
(reduced)
28
(28)
44
(7)
56
(19)
65
(28)
72
(35)
79
(5)
84
(10)
89
(15)
93
(19)
97
(23)
100
(26)
Approximation of harmonics in 37ed5/2
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +18.3 +18.6 -15.1 +1.8 -17.4 +12.3 +4.4 +1.4 +2.6 +7.9 +16.6
Relative (%) +42.7 +43.4 -35.2 +4.2 -40.6 +28.6 +10.3 +3.2 +6.2 +18.3 +38.8
Steps
(reduced)
104
(30)
107
(33)
109
(35)
112
(1)
114
(3)
117
(6)
119
(8)
121
(10)
123
(12)
125
(14)
127
(16)