2549edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 2548edo 2549edo 2550edo →
Prime factorization 2549 (prime)
Step size 0.470773 ¢ 
Fifth 1491\2549 (701.922 ¢)
Semitones (A1:m2) 241:192 (113.5 ¢ : 90.39 ¢)
Consistency limit 7
Distinct consistency limit 7

2549 equal divisions of the octave (abbreviated 2549edo or 2549ed2), also called 2549-tone equal temperament (2549tet) or 2549 equal temperament (2549et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 2549 equal parts of about 0.471 ¢ each. Each step represents a frequency ratio of 21/2549, or the 2549th root of 2.

Theory

2549edo is consistent to the 7-odd-limit, tempering out 43046721/43025920, [28 7 -12 -4 and [-14 4 -10 11. It is strong in the 2.3.7.11.17.19.29 subgroup, tempering out 5832/5831, 23409/23408, 69632/69629, 2910897/2910208, 19267919/19267584 and 424589/424536. Using the 2.3.7.11.17.19.41 subgroup, it tempers out 8569/8568.

Prime harmonics

Approximation of prime harmonics in 2549edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.033 +0.191 +0.025 -0.043 -0.198 +0.027 +0.015 +0.207 +0.003 -0.116
Relative (%) +0.0 -6.9 +40.5 +5.2 -9.1 -42.1 +5.7 +3.3 +44.1 +0.6 -24.6
Steps
(reduced)
2549
(0)
4040
(1491)
5919
(821)
7156
(2058)
8818
(1171)
9432
(1785)
10419
(223)
10828
(632)
11531
(1335)
12383
(2187)
12628
(2432)

Subsets and supersets

2549edo is the 373rd prime edo. 5098edo, which doubles it, gives a good correction to the harmonic 5.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-4040 2549 [2549 4040]] 0.0103 0.0103 2.19