1ed9/8

From Xenharmonic Wiki
Jump to navigation Jump to search

9/8 equal temperament

Using a Just 9/8 whole tone as the basis of an equal temperament tuning results in an interesting non-octave tuning. As every interval is a multiple of 9/8, the resultant tuning would be a subset of 3-limit Just Intonation. This can be also viewed as generating a subset of baldy temperament.

Below is the scala file I used to generate A Bowl of Tibetan Bells by Chris Vaisvil (composition details)

and A Sonnet for Albert Einstein by Chris Vaisvil (details) ! E:\Cakewalk\scales\9_divided_by_8.scl !

9/8 in 12

12 !

203.91

407.82

611.73

815.64

1019.55

1223.46

1427.37

1631.28

1835.19

2039.1

2243.01

2446.92

Intervals as 3-limit ratios

Ratio Cents
(9/8)0 1/1 0.00
(9/8)1 9/8 203.91
(9/8)2 81/64 407.82
(9/8)3 729/512 611.73
(9/8)4 6561/4096 815.64
(9/8)5 59049/32768 1019.55
(9/8)6 531441/262144 1223.46
(9/8)7 4782969/2097152 1427.37
(9/8)8 43046721/16777216 1631.28
(9/8)9 387420489/134217728 1835.19
(9/8)10 3486784401/1073741824 2039.10
(9/8)11 31381059609/8589934592 2243.01
(9/8)12 282429536481/68719476736 2446.92