1213edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1212edt 1213edt 1214edt →
Prime factorization 1213 (prime)
Step size 1.56798¢ 
Octave 765\1213edt (1199.5¢)
Consistency limit 2
Distinct consistency limit 2

1213 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 1213edt or 1213ed3), is a nonoctave tuning system that divides the interval of 3/1 into 1213 equal parts of about 1.57⁠ ⁠¢ each. Each step represents a frequency ratio of 31/1213, or the 1213th root of 3. It corresponds to 765.31779edo.

Theory

1213edt is strong in the 3.5.13.19.23.29 subgroup, tempering out 12675/12673, 318573/318565, 7421875/7420491, 22024249/22021875 and 7993758375/7992538801. Using the 3.5.13.17.19.23 subgroup, it tempers out 8075/8073.

Harmonics

Approximation of harmonics in 1213edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.498 +0.000 +0.571 -0.020 -0.498 +0.755 +0.073 +0.000 -0.518 +0.683 +0.571
Relative (%) -31.8 +0.0 +36.4 -1.3 -31.8 +48.1 +4.7 +0.0 -33.1 +43.5 +36.4
Steps
(reduced)
765
(765)
1213
(0)
1531
(318)
1777
(564)
1978
(765)
2149
(936)
2296
(1083)
2426
(0)
2542
(116)
2648
(222)
2744
(318)
Approximation of harmonics in 1213edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Error Absolute (¢) -0.019 +0.256 -0.020 -0.425 -0.326 -0.498 -0.023 +0.551 +0.755 +0.184 +0.059 +0.073 -0.040 -0.518 +0.000
Relative (%) -1.2 +16.4 -1.3 -27.1 -20.8 -31.8 -1.5 +35.2 +48.1 +11.8 +3.8 +4.7 -2.6 -33.0 +0.0
Steps
(reduced)
2832
(406)
2914
(488)
2990
(564)
3061
(635)
3128
(702)
3191
(765)
3251
(825)
3308
(882)
3362
(936)
3413
(987)
3462
(1036)
3509
(1083)
3554
(1128)
3597
(1171)
3639
(0)