← 1618edo 1619edo 1620edo →
Prime factorization 1619 (is prime)
Step size 0.741198 ¢ 
Fifth 947\1619 (701.915 ¢)
Semitones (A1:m2) 153:122 (113.4 ¢ : 90.43 ¢)
Consistency limit 15
Distinct consistency limit 15

1619edo divides the octave into parts of 741 millicents each. It is the 256th Prime EDO.

Theory

Approximation of prime harmonics in 1619edo
Harmonic 2 3 5 7 11 13 17 19 23 29
Error Absolute (¢) +0.000 -0.040 -0.149 -0.080 +0.134 -0.009 +0.295 -0.293 +0.262 -0.053
Relative (%) +0.0 -5.4 -20.2 -10.8 +18.0 -1.2 +39.8 -39.5 +35.3 -7.1
Steps
(reduced)
1619
(0)
2566
(947)
3759
(521)
4545
(1307)
5601
(744)
5991
(1134)
6618
(142)
6877
(401)
7324
(848)
7865
(1389)

1619edo is excellent in the 13-limit. It supports an extension of the ragismic temperament with 2 extra dimensions in several ways. First, it supports the 441 & 270 & 1619 rank 3 temperament tempering out 4225/4224, 4375/4374, 123201/123200, 655473/655360, 1664000/1663893, and 6470695/6469632. Second, it supports 72 & 494 & 270 & 1619 temperament tempering out 6656/6655, 2912000/2910897, and 29115625/29113344.

In general, 1619edo supports vidar, with the comma set 4225/4224, 4375/4374, and 6656/6655.

Regular temperament properties

Subgroup Comma list Mapping Optimal

8ve stretch (¢)

Tuning error
Absolute (¢) Relative (%)
2.3 [-2566 1619 [1619 2566]] 0.013 0.013 1.7
2.3.5 [-69, 45, -1, [-82, -1, 36 [1619 2566 3759]] 0.030 0.026 3.5
2.3.5.7 4375/4374, [-6 3 9 -7, [-67 14 6 11 [1619 2566 3759 4545]] 0.030 0.023 3.1
2.3.5.7.11 117649/117612, 151263/151250, 759375/758912, 117440512/117406179 [1619 2566 3759 4545 5601]] 0.016 0.034 4.0
2.3.5.7.11.13 4225/4224, 43940/43923, 151263/151250, 91125/91091, 123201/123200 [1619 2566 3759 4545 5601 5991]] 0.013 0.032 4.2