Lumatone mapping for 34edo
34edo is an interesting case for Lumatone mappings, since (like 24edo), it is not generated by fifths and octaves, so the Standard Lumatone mapping for Pythagorean cannot be used.
A 5L 3s-based mapping for 34edo:

32
3
1
6
11
16
21
33
4
9
14
19
24
29
0
2
7
12
17
22
27
32
3
8
13
18
0
5
10
15
20
25
30
1
6
11
16
21
26
31
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
17
22
27
32
3
8
13
18
23
28
33
4
9
14
1
6
11
16
21
26
31
2
7
12
17
14
19
24
29
0
5
10
15
32
3
8
13
18
11
16
A 6L 1s-based mapping:

16
21
20
25
30
1
6
19
24
29
0
5
10
15
20
23
28
33
4
9
14
19
24
29
0
5
22
27
32
3
8
13
18
23
28
33
4
9
14
19
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
15
20
25
30
1
6
11
16
21
26
31
2
7
12
0
5
10
15
20
25
30
1
6
11
16
14
19
24
29
0
5
10
15
33
4
9
14
19
13
18