11L 3s
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author JosephRuhf and made on 2015-02-12 14:10:18 UTC.
- The original revision id was 540792018.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #800061; font-size: 103%;">The Ketradektriatoh Scale</span>= This is a type of scale which denotes the use of a scale placed between [[11edo|11]] and [[14edo|14]] ED2's, employing a ratio generator between 41/32 ~ 9/7 (being [[25edo|25-ED2]] the middle size of the Ketradektriatoh spectrum, in the 2;1 relation), resulting in a variant of tetradecatonic scale comforms by this scheme: LLLsLLLLsLLLLs. __**ED2s that contains this scale:**__ **2 2 2 1 2 2 2 2 1 2 2 2 2 1: [[25edo|25]] (Middle range)** **3 3 3 1 3 3 3 3 1 3 3 3 3 1: [[36edo|36]] (Lufsur range)** **3 3 3 2 3 3 3 3 2 3 3 3 3 2: [[39edo|39]] (Fuslur range)** 4 4 4 1 4 4 4 4 1 4 4 4 4 1: [[47edo|47]] 4 4 4 2 4 4 4 4 2 4 4 4 4 2: [[50edo|50]] 4 4 4 3 4 4 4 4 3 4 4 4 4 3: [[53edo|53]] 5 5 5 1 5 5 5 5 1 5 5 5 5 1: [[58edo|58]] **5 5 5 2 5 5 5 5 2 5 5 5 5 2: [[61edo|61]] Split-φ** **5 5 5 3 5 5 5 5 3 5 5 5 5 3: [[64edo|64]]** **φ** 5 5 5 4 5 5 5 5 4 5 5 5 5 4: [[67edo|67]] 6 6 6 1 6 6 6 6 1 6 6 6 6 1: [[69edo|69]] 6 6 6 5 6 6 6 6 5 6 6 6 6 5: [[81edo|81]] 7 7 7 1 7 7 7 7 1 7 7 7 7 1: [[80edo|80]] 7 7 7 2 7 7 7 7 2 7 7 7 7 2: [[83edo|83]] 7 7 7 3 7 7 7 7 3 7 7 7 7 3: [[86edo|86]] 7 7 7 4 7 7 7 7 4 7 7 7 7 4: [[89edo|89]] 7 7 7 5 7 7 7 7 5 7 7 7 7 5: [[92edo|92]] 7 7 7 6 7 7 7 7 6 7 7 7 7 6: [[95edo|95]] 8 8 8 1 8 8 8 8 1 8 8 8 8 1: [[91edo|91]] **8 8 8 3 8 8 8 8 3 8 8 8 8 3: [[97edo|97]] Split-φ** **8 8 8 5 8 8 8 8 5 8 8 8 8 5: [[103edo|103]]** **φ** 8 8 8 7 8 8 8 8 7 8 8 8 8 7: [[109edo|109]] 9 9 9 1 9 9 9 9 1 9 9 9 9 1: [[102edo|102]] 9 9 9 2 9 9 9 9 2 9 9 9 9 2: [[105edo|105]] 9 9 9 4 9 9 9 9 4 9 9 9 9 4: [[111edo|111]] 9 9 9 5 9 9 9 9 5 9 9 9 9 5: [[114edo|114]] 9 9 9 7 9 9 9 9 7 9 9 9 9 7: [[120edo|120]] 9 9 9 8 9 9 9 9 8 9 9 9 9 8: [[123edo|123]] 10 10 10 1 10 10 10 10 1 10 10 10 10 1:[[113edo|113]] 10 10 10 3 10 10 10 10 3 10 10 10 10 3: [[119edo|119]] 10 10 10 7 10 10 10 10 7 10 10 10 10 7: [[131edo|131]] 10 10 10 9 10 10 10 10 9 10 10 10 10 9: [[137edo|137]] 11 11 11 **<span style="color: #006209;">1</span>** 11 11 11 11 **<span style="color: #006209;">1</span>** 11 11 11 11 **<span style="color: #006209;">1</span>**: [[124edo|124]] 11 11 11 2 11 11 11 11 2 11 11 11 11 2: [[127edo|127]] 11 11 11 3 11 11 11 11 3 11 11 11 11 3: [[130edo|130]] 11 11 11 4 11 11 11 11 4 11 11 11 11 4: [[133edo|133]] 11 11 11 5 11 11 11 11 5 11 11 11 11 5: [[136edo|136]] 11 11 11 6 11 11 11 11 6 11 11 11 11 6: [[139edo|139]] 11 11 11 7 11 11 11 11 7 11 11 11 11 7: [[142edo|142]] 11 11 11 8 11 11 11 11 8 11 11 11 11 8: [[145edo|145]] 11 11 11 9 11 11 11 11 9 11 11 11 11 9 :[[148edo|148]] 11 11 11 10 11 11 11 11 10 11 11 11 11 10: [[151edo|151]] 12 12 12 1 12 12 12 12 1 12 12 12 12 1: [[135edo|135]] 12 12 12 5 12 12 12 12 5 12 12 12 12 5: [[147edo|147]] 12 12 12 7 12 12 12 12 7 12 12 12 12 7: [[153edo|153]] 12 12 12 11 12 12 12 12 11 12 12 12 12 11: [[165edo|165]] 13 13 13 1 13 13 13 13 1 13 13 13 13 1: [[146edo|146]] 13 13 13 2 13 13 13 13 2 13 13 13 13 2: [[149edo|149]] 13 13 13 3 13 13 13 13 3 13 13 13 13 3: [[152edo|152]] 13 13 13 4 13 13 13 13 4 13 13 13 13 4: [[155edo|155]] **13 13 13 5 13 13 13 13 5 13 13 13 13 5: [[158edo|158]] Split-φ** 13 13 13 6 13 13 13 13 6 13 13 13 13 6: [[161edo|161]] 13 13 13 7 13 13 13 13 7 13 13 13 13 7: [[164edo|164]] **13 13 13 8 13 13 13 13 8 13 13 13 13 8: [[167edo|167]]** **φ** 13 13 13 9 13 13 13 13 9 13 13 13 13 9: [[170edo|170]] 13 13 13 10 13 13 13 13 10 13 13 13 13 10: [[173edo|173]] 13 13 13 11 13 13 13 13 11 13 13 13 13 11: [[176edo|176]] 13 13 13 12 13 13 13 13 12 13 13 13 13 12: [[179edo|179]] 14 14 14 1 14 14 14 14 1 14 14 14 14 1: [[157edo|157]] 14 14 14 3 14 14 14 14 3 14 14 14 14 3: [[163edo|163]] 14 14 14 5 14 14 14 14 5 14 14 14 14 5: [[169edo|169]] 14 14 14 9 14 14 14 14 9 14 14 14 14 9: [[181edo|181]] 14 14 14 11 14 14 14 14 11 14 14 14 14 11: [[187edo|187]] 14 14 14 13 14 14 14 14 13 14 14 14 14 13: [[193edo|193]] 15 15 15 1 15 15 15 15 1 15 15 15 15 1: [[168edo|168]] 15 15 15 2 15 15 15 15 2 15 15 15 15 2: [[171edo|171]] 15 15 15 4 15 15 15 15 4 15 15 15 15 4: [[177edo|177]] 15 15 15 7 15 15 15 15 7 15 15 15 15 7: [[186edo|186]] 15 15 15 8 15 15 15 15 8 15 15 15 15 8: [[189edo|189]] 15 15 15 11 15 15 15 15 11 15 15 15 15 11: [[198edo|198]] 15 15 15 13 15 15 15 15 13 15 15 15 15 13: [[204edo|204]] 15 15 15 14 15 15 15 15 14 15 15 15 15 14: [[207edo|207]] 16 16 16 1 16 16 16 16 1 16 16 16 16 1: [[179edo|179]] 16 16 16 3 16 16 16 16 3 16 16 16 16 3: [[185edo|185]] 16 16 16 5 16 16 16 16 5 16 16 16 16 5: [[191edo|191]] 16 16 16 7 16 16 16 16 7 16 16 16 16 7: [[197edo|197]] 16 16 16 9 16 16 16 16 9 16 16 16 16 9: [[203edo|203]] 16 16 16 11 16 16 16 16 11 16 16 16 16 11: [[209edo|209]] 16 16 16 13 16 16 16 16 13 16 16 16 16 13: [[215edo|215]] 16 16 16 15 16 16 16 16 15 16 16 16 16 15: [[221edo|221]] 17 17 17 1 17 17 17 17 1 17 17 17 17 1: [[190edo|190]] 17 17 17 2 17 17 17 17 2 17 17 17 17 2: [[193edo|193]] 17 17 17 3 17 17 17 17 3 17 17 17 17 3: [[196edo|196]] 17 17 17 4 17 17 17 17 4 17 17 17 17 4: [[199edo|199]] **17 17 17 5 17 17 17 17 5 17 17 17 17 5: [[202edo|202]] (Top limit for Lufsur range)** **17 17 17 6 17 17 17 17 6 17 17 17 17 6: [[205edo|205]]** **17 17 17 7 17 17 17 17 7 17 17 17 17 7: [[208edo|208]]** **17 17 17 8 17 17 17 17 8 17 17 17 17 8: [[211edo|211]]** **17 17 17 9 17 17 17 17 9 17 17 17 17 9: [[214edo|214]]** **17 17 17 10 17 17 17 17 10 17 17 17 17 10: [[217edo|217]]** **17 17 17 11 17 17 17 17 11 17 17 17 17 11: [[220edo|220]]** **17 17 17 12 17 17 17 17 12 17 17 17 17 12: [[223edo|223]] (Top limit for Fuslur range)** 17 17 17 13 17 17 17 17 13 17 17 17 17 13: [[226edo|226]] 17 17 17 14 17 17 17 17 14 17 17 17 17 14: [[229edo|229]] 17 17 17 15 17 17 17 17 15 17 17 17 17 15: [[232edo|232]] 17 17 17 16 17 17 17 17 16 17 17 17 17 16: [[235edo|235]] The next table below shows an extension of ED2s which supports the Ketradektriatoh scale, with respect to the principal generator and their results for each L/s sizes: || 4\[[11edo|11]] || || || || || || || 436.364 || 109.091 || 0 ||= || || || || || || || || 29\[[80edo|80]] || 435 || 105 || 15 || || || || || || || || 25\[[69edo|69]] || || 434.783 || 104.348 || 17.391 || || || || || || || 21\[[58edo|58]] || || || 434.483 || 103.448 || 20.69 || || || || || || 17\[[47edo|47]] || || || || 434.043 || 102.128 || 25.532 || || || || || || || 30\[[83edo|83]] || || || 433.735 || 101.208 || 28.916 || || || || || || || || || 73\[[202edo|202]] || 433.663 || 100.990 || 29.703 || Since here are the optimal range Lufsur mode (?) || || || || || || || 43\[[119edo|119]] || || 433.613 || 100.840 || 30.252 || || || || || || || || || || 433.359 || 100.077 || 33.052 || || || || || 13\[[36edo|36]] || || || || || 433.333 || 100 || 33.333 || || || || || || || || || || 433.308 || 99.923 || 33.617 || || || || || || 22\[[61edo|61]] || || || || 432.787 || 98.361 || 39.344 || || || || 9\[[25edo|25]] || || || || || || 432 || 96 || 48 ||= Boundary of propriety; generators smaller than this are proper || || || || || 23\[[64edo|64]] || || || || 431.25 || 93.75 || 56.25 || || || || || 14\[[39edo|39]] || || || || || 430.769 || 92.308 || 61.538 || || || || || || || || 47\[[131edo|131]] || || 430.534 || 91.603 || 64.122 || || || || || || || || || 80\[[223edo|223]] || 430.493 || 91.480 || 64.575 || Until here are the optimal range Fuslur mode (?) || || || || || || 33\[[92edo|92]] || || || 430.435 || 91.304 || 65.217 || || || || || || 19\[[53edo|53]] || || || || 430.189 || 90.566 || 67.925 || || || || || || || 24\[[67edo|67]] || || || 429.851 || 89.552 || 71.642 || || || || || || || || 29\[[81edo|81]] || || 429.63 || 88.889 || 74.074 || || || || || || || || || 34\[[95edo|95]] || 429.474 || 88.421 || 75.7895 || || || 5\[[14edo|14]] || || || || || || || 428.571 || 85.714 || 85.714 ||= ||
Original HTML content:
<html><head><title>11L 3s</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="The Ketradektriatoh Scale"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #800061; font-size: 103%;">The Ketradektriatoh Scale</span></h1> <br /> This is a type of scale which denotes the use of a scale placed between <a class="wiki_link" href="/11edo">11</a> and <a class="wiki_link" href="/14edo">14</a> ED2's, employing a ratio generator between 41/32 ~ 9/7 (being <a class="wiki_link" href="/25edo">25-ED2</a> the middle size of the Ketradektriatoh spectrum, in the 2;1 relation), resulting in a variant of tetradecatonic scale comforms by this scheme: LLLsLLLLsLLLLs.<br /> <br /> <u><strong>ED2s that contains this scale:</strong></u><br /> <br /> <strong>2 2 2 1 2 2 2 2 1 2 2 2 2 1: <a class="wiki_link" href="/25edo">25</a> (Middle range)</strong><br /> <strong>3 3 3 1 3 3 3 3 1 3 3 3 3 1: <a class="wiki_link" href="/36edo">36</a> (Lufsur range)</strong><br /> <strong>3 3 3 2 3 3 3 3 2 3 3 3 3 2: <a class="wiki_link" href="/39edo">39</a> (Fuslur range)</strong><br /> <br /> 4 4 4 1 4 4 4 4 1 4 4 4 4 1: <a class="wiki_link" href="/47edo">47</a><br /> 4 4 4 2 4 4 4 4 2 4 4 4 4 2: <a class="wiki_link" href="/50edo">50</a><br /> 4 4 4 3 4 4 4 4 3 4 4 4 4 3: <a class="wiki_link" href="/53edo">53</a><br /> <br /> 5 5 5 1 5 5 5 5 1 5 5 5 5 1: <a class="wiki_link" href="/58edo">58</a><br /> <strong>5 5 5 2 5 5 5 5 2 5 5 5 5 2: <a class="wiki_link" href="/61edo">61</a> Split-φ</strong><br /> <strong>5 5 5 3 5 5 5 5 3 5 5 5 5 3: <a class="wiki_link" href="/64edo">64</a></strong> <strong>φ</strong><br /> 5 5 5 4 5 5 5 5 4 5 5 5 5 4: <a class="wiki_link" href="/67edo">67</a><br /> <br /> 6 6 6 1 6 6 6 6 1 6 6 6 6 1: <a class="wiki_link" href="/69edo">69</a><br /> 6 6 6 5 6 6 6 6 5 6 6 6 6 5: <a class="wiki_link" href="/81edo">81</a><br /> <br /> 7 7 7 1 7 7 7 7 1 7 7 7 7 1: <a class="wiki_link" href="/80edo">80</a><br /> 7 7 7 2 7 7 7 7 2 7 7 7 7 2: <a class="wiki_link" href="/83edo">83</a><br /> 7 7 7 3 7 7 7 7 3 7 7 7 7 3: <a class="wiki_link" href="/86edo">86</a><br /> 7 7 7 4 7 7 7 7 4 7 7 7 7 4: <a class="wiki_link" href="/89edo">89</a><br /> 7 7 7 5 7 7 7 7 5 7 7 7 7 5: <a class="wiki_link" href="/92edo">92</a><br /> 7 7 7 6 7 7 7 7 6 7 7 7 7 6: <a class="wiki_link" href="/95edo">95</a><br /> <br /> 8 8 8 1 8 8 8 8 1 8 8 8 8 1: <a class="wiki_link" href="/91edo">91</a><br /> <strong>8 8 8 3 8 8 8 8 3 8 8 8 8 3: <a class="wiki_link" href="/97edo">97</a> Split-φ</strong><br /> <strong>8 8 8 5 8 8 8 8 5 8 8 8 8 5: <a class="wiki_link" href="/103edo">103</a></strong> <strong>φ</strong><br /> 8 8 8 7 8 8 8 8 7 8 8 8 8 7: <a class="wiki_link" href="/109edo">109</a><br /> <br /> 9 9 9 1 9 9 9 9 1 9 9 9 9 1: <a class="wiki_link" href="/102edo">102</a><br /> 9 9 9 2 9 9 9 9 2 9 9 9 9 2: <a class="wiki_link" href="/105edo">105</a><br /> 9 9 9 4 9 9 9 9 4 9 9 9 9 4: <a class="wiki_link" href="/111edo">111</a><br /> 9 9 9 5 9 9 9 9 5 9 9 9 9 5: <a class="wiki_link" href="/114edo">114</a><br /> 9 9 9 7 9 9 9 9 7 9 9 9 9 7: <a class="wiki_link" href="/120edo">120</a><br /> 9 9 9 8 9 9 9 9 8 9 9 9 9 8: <a class="wiki_link" href="/123edo">123</a><br /> <br /> 10 10 10 1 10 10 10 10 1 10 10 10 10 1:<a class="wiki_link" href="/113edo">113</a><br /> 10 10 10 3 10 10 10 10 3 10 10 10 10 3: <a class="wiki_link" href="/119edo">119</a><br /> 10 10 10 7 10 10 10 10 7 10 10 10 10 7: <a class="wiki_link" href="/131edo">131</a><br /> 10 10 10 9 10 10 10 10 9 10 10 10 10 9: <a class="wiki_link" href="/137edo">137</a><br /> <br /> 11 11 11 <strong><span style="color: #006209;">1</span></strong> 11 11 11 11 <strong><span style="color: #006209;">1</span></strong> 11 11 11 11 <strong><span style="color: #006209;">1</span></strong>: <a class="wiki_link" href="/124edo">124</a><br /> 11 11 11 2 11 11 11 11 2 11 11 11 11 2: <a class="wiki_link" href="/127edo">127</a><br /> 11 11 11 3 11 11 11 11 3 11 11 11 11 3: <a class="wiki_link" href="/130edo">130</a><br /> 11 11 11 4 11 11 11 11 4 11 11 11 11 4: <a class="wiki_link" href="/133edo">133</a><br /> 11 11 11 5 11 11 11 11 5 11 11 11 11 5: <a class="wiki_link" href="/136edo">136</a><br /> 11 11 11 6 11 11 11 11 6 11 11 11 11 6: <a class="wiki_link" href="/139edo">139</a><br /> 11 11 11 7 11 11 11 11 7 11 11 11 11 7: <a class="wiki_link" href="/142edo">142</a><br /> 11 11 11 8 11 11 11 11 8 11 11 11 11 8: <a class="wiki_link" href="/145edo">145</a><br /> 11 11 11 9 11 11 11 11 9 11 11 11 11 9 :<a class="wiki_link" href="/148edo">148</a><br /> 11 11 11 10 11 11 11 11 10 11 11 11 11 10: <a class="wiki_link" href="/151edo">151</a><br /> <br /> 12 12 12 1 12 12 12 12 1 12 12 12 12 1: <a class="wiki_link" href="/135edo">135</a><br /> 12 12 12 5 12 12 12 12 5 12 12 12 12 5: <a class="wiki_link" href="/147edo">147</a><br /> 12 12 12 7 12 12 12 12 7 12 12 12 12 7: <a class="wiki_link" href="/153edo">153</a><br /> 12 12 12 11 12 12 12 12 11 12 12 12 12 11: <a class="wiki_link" href="/165edo">165</a><br /> <br /> 13 13 13 1 13 13 13 13 1 13 13 13 13 1: <a class="wiki_link" href="/146edo">146</a><br /> 13 13 13 2 13 13 13 13 2 13 13 13 13 2: <a class="wiki_link" href="/149edo">149</a><br /> 13 13 13 3 13 13 13 13 3 13 13 13 13 3: <a class="wiki_link" href="/152edo">152</a><br /> 13 13 13 4 13 13 13 13 4 13 13 13 13 4: <a class="wiki_link" href="/155edo">155</a><br /> <strong>13 13 13 5 13 13 13 13 5 13 13 13 13 5: <a class="wiki_link" href="/158edo">158</a> Split-φ</strong><br /> 13 13 13 6 13 13 13 13 6 13 13 13 13 6: <a class="wiki_link" href="/161edo">161</a><br /> 13 13 13 7 13 13 13 13 7 13 13 13 13 7: <a class="wiki_link" href="/164edo">164</a><br /> <strong>13 13 13 8 13 13 13 13 8 13 13 13 13 8: <a class="wiki_link" href="/167edo">167</a></strong> <strong>φ</strong><br /> 13 13 13 9 13 13 13 13 9 13 13 13 13 9: <a class="wiki_link" href="/170edo">170</a><br /> 13 13 13 10 13 13 13 13 10 13 13 13 13 10: <a class="wiki_link" href="/173edo">173</a><br /> 13 13 13 11 13 13 13 13 11 13 13 13 13 11: <a class="wiki_link" href="/176edo">176</a><br /> 13 13 13 12 13 13 13 13 12 13 13 13 13 12: <a class="wiki_link" href="/179edo">179</a><br /> <br /> 14 14 14 1 14 14 14 14 1 14 14 14 14 1: <a class="wiki_link" href="/157edo">157</a><br /> 14 14 14 3 14 14 14 14 3 14 14 14 14 3: <a class="wiki_link" href="/163edo">163</a><br /> 14 14 14 5 14 14 14 14 5 14 14 14 14 5: <a class="wiki_link" href="/169edo">169</a><br /> 14 14 14 9 14 14 14 14 9 14 14 14 14 9: <a class="wiki_link" href="/181edo">181</a><br /> 14 14 14 11 14 14 14 14 11 14 14 14 14 11: <a class="wiki_link" href="/187edo">187</a><br /> 14 14 14 13 14 14 14 14 13 14 14 14 14 13: <a class="wiki_link" href="/193edo">193</a><br /> <br /> 15 15 15 1 15 15 15 15 1 15 15 15 15 1: <a class="wiki_link" href="/168edo">168</a><br /> 15 15 15 2 15 15 15 15 2 15 15 15 15 2: <a class="wiki_link" href="/171edo">171</a><br /> 15 15 15 4 15 15 15 15 4 15 15 15 15 4: <a class="wiki_link" href="/177edo">177</a><br /> 15 15 15 7 15 15 15 15 7 15 15 15 15 7: <a class="wiki_link" href="/186edo">186</a><br /> 15 15 15 8 15 15 15 15 8 15 15 15 15 8: <a class="wiki_link" href="/189edo">189</a><br /> 15 15 15 11 15 15 15 15 11 15 15 15 15 11: <a class="wiki_link" href="/198edo">198</a><br /> 15 15 15 13 15 15 15 15 13 15 15 15 15 13: <a class="wiki_link" href="/204edo">204</a><br /> 15 15 15 14 15 15 15 15 14 15 15 15 15 14: <a class="wiki_link" href="/207edo">207</a><br /> <br /> 16 16 16 1 16 16 16 16 1 16 16 16 16 1: <a class="wiki_link" href="/179edo">179</a><br /> 16 16 16 3 16 16 16 16 3 16 16 16 16 3: <a class="wiki_link" href="/185edo">185</a><br /> 16 16 16 5 16 16 16 16 5 16 16 16 16 5: <a class="wiki_link" href="/191edo">191</a><br /> 16 16 16 7 16 16 16 16 7 16 16 16 16 7: <a class="wiki_link" href="/197edo">197</a><br /> 16 16 16 9 16 16 16 16 9 16 16 16 16 9: <a class="wiki_link" href="/203edo">203</a><br /> 16 16 16 11 16 16 16 16 11 16 16 16 16 11: <a class="wiki_link" href="/209edo">209</a><br /> 16 16 16 13 16 16 16 16 13 16 16 16 16 13: <a class="wiki_link" href="/215edo">215</a><br /> 16 16 16 15 16 16 16 16 15 16 16 16 16 15: <a class="wiki_link" href="/221edo">221</a><br /> <br /> 17 17 17 1 17 17 17 17 1 17 17 17 17 1: <a class="wiki_link" href="/190edo">190</a><br /> 17 17 17 2 17 17 17 17 2 17 17 17 17 2: <a class="wiki_link" href="/193edo">193</a><br /> 17 17 17 3 17 17 17 17 3 17 17 17 17 3: <a class="wiki_link" href="/196edo">196</a><br /> 17 17 17 4 17 17 17 17 4 17 17 17 17 4: <a class="wiki_link" href="/199edo">199</a><br /> <strong>17 17 17 5 17 17 17 17 5 17 17 17 17 5: <a class="wiki_link" href="/202edo">202</a> (Top limit for Lufsur range)</strong><br /> <strong>17 17 17 6 17 17 17 17 6 17 17 17 17 6: <a class="wiki_link" href="/205edo">205</a></strong><br /> <strong>17 17 17 7 17 17 17 17 7 17 17 17 17 7: <a class="wiki_link" href="/208edo">208</a></strong><br /> <strong>17 17 17 8 17 17 17 17 8 17 17 17 17 8: <a class="wiki_link" href="/211edo">211</a></strong><br /> <strong>17 17 17 9 17 17 17 17 9 17 17 17 17 9: <a class="wiki_link" href="/214edo">214</a></strong><br /> <strong>17 17 17 10 17 17 17 17 10 17 17 17 17 10: <a class="wiki_link" href="/217edo">217</a></strong><br /> <strong>17 17 17 11 17 17 17 17 11 17 17 17 17 11: <a class="wiki_link" href="/220edo">220</a></strong><br /> <strong>17 17 17 12 17 17 17 17 12 17 17 17 17 12: <a class="wiki_link" href="/223edo">223</a> (Top limit for Fuslur range)</strong><br /> 17 17 17 13 17 17 17 17 13 17 17 17 17 13: <a class="wiki_link" href="/226edo">226</a><br /> 17 17 17 14 17 17 17 17 14 17 17 17 17 14: <a class="wiki_link" href="/229edo">229</a><br /> 17 17 17 15 17 17 17 17 15 17 17 17 17 15: <a class="wiki_link" href="/232edo">232</a><br /> 17 17 17 16 17 17 17 17 16 17 17 17 17 16: <a class="wiki_link" href="/235edo">235</a><br /> <br /> The next table below shows an extension of ED2s which supports the Ketradektriatoh scale, with respect to the principal generator and their results for each L/s sizes:<br /> <table class="wiki_table"> <tr> <td>4\<a class="wiki_link" href="/11edo">11</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>436.364<br /> </td> <td>109.091<br /> </td> <td>0<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>29\<a class="wiki_link" href="/80edo">80</a><br /> </td> <td>435<br /> </td> <td>105<br /> </td> <td>15<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>25\<a class="wiki_link" href="/69edo">69</a><br /> </td> <td><br /> </td> <td>434.783<br /> </td> <td>104.348<br /> </td> <td>17.391<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>21\<a class="wiki_link" href="/58edo">58</a><br /> </td> <td><br /> </td> <td><br /> </td> <td>434.483<br /> </td> <td>103.448<br /> </td> <td>20.69<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>17\<a class="wiki_link" href="/47edo">47</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>434.043<br /> </td> <td>102.128<br /> </td> <td>25.532<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>30\<a class="wiki_link" href="/83edo">83</a><br /> </td> <td><br /> </td> <td><br /> </td> <td>433.735<br /> </td> <td>101.208<br /> </td> <td>28.916<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>73\<a class="wiki_link" href="/202edo">202</a><br /> </td> <td>433.663<br /> </td> <td>100.990<br /> </td> <td>29.703<br /> </td> <td>Since here are the optimal range Lufsur mode (?)<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>43\<a class="wiki_link" href="/119edo">119</a><br /> </td> <td><br /> </td> <td>433.613<br /> </td> <td>100.840<br /> </td> <td>30.252<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>433.359<br /> </td> <td>100.077<br /> </td> <td>33.052<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>13\<a class="wiki_link" href="/36edo">36</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>433.333<br /> </td> <td>100<br /> </td> <td>33.333<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>433.308<br /> </td> <td>99.923<br /> </td> <td>33.617<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>22\<a class="wiki_link" href="/61edo">61</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>432.787<br /> </td> <td>98.361<br /> </td> <td>39.344<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>9\<a class="wiki_link" href="/25edo">25</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>432<br /> </td> <td>96<br /> </td> <td>48<br /> </td> <td style="text-align: center;">Boundary of propriety;<br /> generators smaller than this are proper<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>23\<a class="wiki_link" href="/64edo">64</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>431.25<br /> </td> <td>93.75<br /> </td> <td>56.25<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>14\<a class="wiki_link" href="/39edo">39</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>430.769<br /> </td> <td>92.308<br /> </td> <td>61.538<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>47\<a class="wiki_link" href="/131edo">131</a><br /> </td> <td><br /> </td> <td>430.534<br /> </td> <td>91.603<br /> </td> <td>64.122<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>80\<a class="wiki_link" href="/223edo">223</a><br /> </td> <td>430.493<br /> </td> <td>91.480<br /> </td> <td>64.575<br /> </td> <td>Until here are the optimal range Fuslur mode (?)<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>33\<a class="wiki_link" href="/92edo">92</a><br /> </td> <td><br /> </td> <td><br /> </td> <td>430.435<br /> </td> <td>91.304<br /> </td> <td>65.217<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>19\<a class="wiki_link" href="/53edo">53</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>430.189<br /> </td> <td>90.566<br /> </td> <td>67.925<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>24\<a class="wiki_link" href="/67edo">67</a><br /> </td> <td><br /> </td> <td><br /> </td> <td>429.851<br /> </td> <td>89.552<br /> </td> <td>71.642<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>29\<a class="wiki_link" href="/81edo">81</a><br /> </td> <td><br /> </td> <td>429.63<br /> </td> <td>88.889<br /> </td> <td>74.074<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>34\<a class="wiki_link" href="/95edo">95</a><br /> </td> <td>429.474<br /> </td> <td>88.421<br /> </td> <td>75.7895<br /> </td> <td><br /> </td> </tr> <tr> <td>5\<a class="wiki_link" href="/14edo">14</a><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>428.571<br /> </td> <td>85.714<br /> </td> <td>85.714<br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> </body></html>