List of 22et rank two temperaments by complexity
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-04-23 19:08:22 UTC.
- The original revision id was 324381556.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed rank-two temperaments supported by the [[22edo]] patent val, below the indicated cutoff in TE badness. =5-limit temperaments with badness below 0.1= Listed is the wedgie and the TE complexity for six temperaments with badness less than 0.1. || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<3 5 1]] || Porcupine || 1.663 || 250/243 || || 2 || <<2 -4 -11]] || Srutal || 2.121 || 2048/2025 || || 3 || <<5 1 -10]] || Magic || 2.417 || 3125/3072 || || 4 || <<7 -3 -21]] || Orson || 4.232 || 2109375/2097152 || || 5 || <<9 -7 -32]] || Escapade || 6.243 || 4294967296/4271484375 || || 6 || <<16 -10 -53]] || Kwazy || 10.454 || 9010162353515625/9007199254740992 || =7-limit temperaments with badness below 0.06= Listed is the wedgie and the TE complexity for 14 temperaments with badness less than 0.06. || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<2 -4 -4 -11 -12 2]] || Pajara || 1.953 || 50/49 64/63 || || 2 || <<6 10 10 2 -1 -5]] || Hedgehog || 2.784 || 50/49 245/243 || || 3 || <<3 5 -6 1 -18 -28]] || Porcupine || 2.819 || 64/63 250/243 || || 4 || <<1 9 -2 12 -6 -30]] || Superpyth || 2.874 || 64/63 245/243 || || 5 || <<8 6 6 -9 -13 -3]] || Doublewide || 2.928 || 50/49 875/864 || || 6 || <<5 1 12 -10 5 25]] || Magic || 2.937 || 225/224 245/243 || || 7 || <<3 5 16 1 17 23]] || Porky || 3.362 ||225/224 250/243 || || 8 || <<7 -3 8 -21 -7 27]] || Orwell || 3.685 || 225/224 1728/1715 || || 9 || <<4 -8 14 -22 11 55]] || Shrutar || 5.101 || 245/243 2048/2025 || || 10 || <<6 -12 10 -33 -1 57]] || Echidna || 5.925 || 1728/1715 2048/2025 || || 11 || <<12 -2 20 -31 -2 52]] || Wizard || 6.372 || 225/224 118098/117649 || || 12 || <<11 -11 22 -43 4 82]] || Hendecatonic || 8.442 || 6144/6125 10976/10935 || || 13 || <<18 -14 30 -64 -3 109]] || Septisuperfourth || 11.986 || 6144/6125 118098/117649 || || 14 || <<23 -13 42 -74 2 134]] || Fifthplus || 14.679 || 65625/65536 420175/419904 || =11-limit temperaments with badness below 0.05= Listed is the wedgie and the TE complexity for 38 temperaments with badness less than 0.05. || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<6 10 10 8 2 -1 -8 -5 -16 -12]] || Hedgehog || 2.439 || 50/49 55/54 99/98 || || 2 || <<3 5 -6 4 1 -18 -4 -28 -8 32]] || Porcupine || 2.478 || 55/54 64/63 100/99 || || 3 || <<2 -4 -4 -12 -11 -12 -26 2 -14 -20]] || Pajara || 2.543 || 50/49 64/63 99/98 || || 4 || <<2 -4 -4 10 -11 -12 9 2 37 42]] || Pajarous || 2.718 || 50/49 55/54 64/63 || || 5 || <<5 1 12 14 -10 5 5 25 29 -2]] || Telepathy || 2.864 || 55/54 99/98 176/175 || || 6 || <<1 9 -2 -6 12 -6 -13 -30 -45 -10]] || Suprapyth || 3.011 || 55/54 64/63 99/98 || || 7 || <<3 5 16 4 1 17 -4 23 -8 -44]] || Porky || 3.020 || 55/54 100/99 225/224 || || 8 || <<8 6 6 18 -9 -13 1 -3 21 30]] || Fleetwood || 3.081 || 50/49 55/54 176/175 || || 9 || <<7 -3 8 2 -21 -7 -21 27 15 -22]] || Orwell || 3.242 || 99/98 121/120 176/175 || || 10 || <<4 -8 -8 -2 -22 -24 -17 4 23 22]] || Hemipaj || 3.389 || 50/49 64/63 121/120 || || 11 || <<8 6 6 -4 -9 -13 -34 -3 -30 -32]] || Doublewide || 3.407 || 50/49 99/98 875/864 || || 12 || <<1 9 -2 16 12 -6 22 -30 6 52]] || Superpyth || 3.410 || 64/63 100/99 245/243 || || 13 || <<1 -13 -2 -6 -23 -6 -13 32 31 -10]] || Quasisupra || 3.490 || 64/63 99/98 121/120 || || 14 || <<10 2 2 6 -20 -25 -25 -1 7 10]] || Astrology || 3.575 || 50/49 121/120 176/175 || || 15 || <<4 14 14 20 13 11 18 -7 -2 8]] || || 3.637 || 50/49 99/98 2662/2625 || || 16 || <<5 1 -10 -8 -10 -30 -30 -26 -22 12]] || || 3.686 || 64/63 100/99 605/588 || || 17 || <<5 1 12 -8 -10 5 -30 25 -22 -64]] || Magic || 3.715 || 100/99 225/224 245/243 || || 18 || <<0 0 0 22 0 0 35 0 51 62]] || || 4.028 || 50/49 64/63 245/243 || || 19 || <<4 -8 14 -2 -22 11 -17 55 23 -54]] || Shrutar || 4.530 || 121/120 176/175 245/243 || || 20 || <<13 7 18 10 -19 -8 -29 22 -1 -34]] || || 4.554 || 99/98 121/120 625/616 || || 21 || <<9 -7 4 -10 -32 -19 -47 29 1 -42]] || || 5.075 || 99/98 176/175 2560/2541 || || 22 || <<10 2 24 6 -20 10 -25 50 7 -66]] || || 5.271 || 121/120 225/224 245/243 || || 23 || <<2 -4 18 -12 -11 23 -26 53 -14 -96]] || || 5.317 || 100/99 385/384 1232/1215 || || 24 || <<7 -3 8 -20 -21 -7 -56 27 -36 -84]] || || 5.605 || 100/99 225/224 1728/1715 || || 25 || <<6 -12 10 -14 -33 -1 -43 57 9 -74]] || Echidna || 5.898 || 176/175 540/539 896/891 || || 26 || <<12 -2 20 -6 -31 -2 -51 52 -7 -86]] || Wizard || 6.421 || 225/224 385/384 4000/3993 || || 27 || <<11 -11 22 0 -43 4 -38 82 38 -76]] || || 7.478 || 121/120 176/175 10976/10935 || || 28 || <<9 -7 26 -10 -32 16 -47 80 1 -118]] || || 7.718 || 245/243 385/384 4000/3993 || || 29 || <<13 -15 18 -12 -54 -8 -64 84 24 -96]] || || 8.886 || 176/175 540/539 16384/16335 || || 30 || <<11 -11 22 -22 -43 4 -73 82 -13 -138]] || || 9.219 || 540/539 896/891 4375/4356 || || 31 || <<19 -5 28 -4 -52 -9 -72 79 8 -108]] || || 9.470 || 225/224 385/384 43923/43750 || || 32 || <<16 -10 34 -8 -53 9 -68 107 16 -140]] || || 10.578 || 385/384 3388/3375 9801/9800 || || 33 || <<18 -14 30 -20 -64 -3 -94 109 2 -160]] || Septisuperfourth || 12.086 || 540/539 4000/3993 5632/5625 || || 34 || <<25 -17 38 -18 -85 -10 -115 136 17 -182]] || || 15.106 || 540/539 5632/5625 35937/35840 || || 35 || <<28 -12 54 -14 -84 7 -119 159 9 -226]] || || 16.904 || 385/384 9801/9800 456533/455625 || || 36 || <<30 -16 50 -26 -95 -5 -145 161 -5 -246]] || || 18.435 || 540/539 4000/3993 65625/65536 || || 37 || <<34 -24 64 -28 -117 6 -162 216 18 -300]] || || 22.572 || 5632/5625 9801/9800 41503/41472 || || 38 || <<46 -26 84 -34 -148 4 -213 268 11 -386]] || || 28.911 || 9801/9800 41503/41472 65625/65536 || =13-limit temperaments with badness below 0.04= Listed is the wedgie and the TE complexity for 40 temperaments with badness less than 0.04. || Rank || Wedgie || Name || Complexity || Commas || || 1 || <<6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]] || Hedgehog || 2.196 || 50/49 55/54 65/63 99/98 || || 2 || <<2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]] || Pajarous || 2.481 || 50/49 55/54 64/63 65/63 || || 3 || <<3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]] || Porkpie || 2.487 || 55/54 64/63 65/63 100/99 || || 4 || <<2 -4 -4 -12 4 -11 -12 -26 -1 2 -14 24 -20 26 58]] || Pajara || 2.588 || 50/49 64/63 65/63 99/98 || || 5 || <<8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]] || Fleetwood || 2.861 || 50/49 55/54 65/63 176/175 || || 6 || <<7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]] || Blair || 2.911 || 65/64 78/77 91/90 99/98 || || 7 || <<5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]] || Telepathy || 2.980 || 55/54 65/64 91/90 99/98 || || 8 || <<3 5 16 4 17 1 17 -4 16 23 -8 21 -44 -11 44]] || || 3.040 || 55/54 65/63 100/99 225/224 || || 9 || <<1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]] || || 3.151 || 55/54 64/63 65/63 364/363 || || 10 || <<2 -4 -4 -12 -18 -11 -12 -26 -36 2 -14 -27 -20 -36 -18]] || || 3.161 || 50/49 64/63 99/98 975/968 || || 11 || <<1 -13 -2 -6 -9 -23 -6 -13 -18 32 31 27 -10 -18 -9]] || || 3.168 || 64/63 78/77 91/90 121/120 || || 12 || <<5 1 12 14 21 -10 5 5 15 25 29 45 -2 15 21]] || || 3.194 || 55/54 65/63 99/98 176/175 || || 13 || <<3 5 -6 4 17 1 -18 -4 16 -28 -8 21 32 70 44]] || || 3.195 || 55/54 64/63 91/90 100/99 || || 14 || <<1 9 -2 16 13 12 -6 22 17 -30 6 -3 52 44 -14]] || || 3.228 || 64/63 78/77 91/90 100/99 || || 15 || <<1 9 -2 -6 13 12 -6 -13 17 -30 -45 -3 -10 44 67]] || || 3.234 || 55/54 64/63 91/90 99/98 || || 16 || <<5 1 -10 -8 -1 -10 -30 -30 -20 -26 -22 -6 12 34 26]] || || 3.296 || 64/63 65/63 100/99 169/165 || || 17 || <<3 5 16 4 -5 1 17 -4 -19 23 -8 -30 -44 -73 -32]] || || 3.380 || 55/54 65/64 91/90 100/99 || || 18 || <<5 1 12 -8 -1 -10 5 -30 -20 25 -22 -6 -64 -47 26]] || || 3.413 || 65/64 78/77 91/90 100/99 || || 19 || <<0 0 0 0 22 0 0 0 35 0 0 51 0 62 76]] || || 3.436 || 50/49 55/54 64/63 99/98 || || 20 || <<4 -8 -8 -2 -14 -22 -24 -17 -37 4 23 -3 22 -10 -41]] || || 3.467 || 50/49 64/63 78/77 121/120 || || 21 || <<10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]] || || 3.495 || 50/49 65/64 78/77 121/120 || || 22 || <<8 6 6 -4 -6 -9 -13 -34 -39 -3 -30 -36 -32 -39 -6]] || || 3.603 || 50/49 78/77 99/98 875/864 || || 23 || <<6 10 10 8 -10 2 -1 -8 -38 -5 -16 -60 -12 -65 -64]] || || 3.844 || 50/49 55/54 99/98 975/968 || || 24 || <<7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73]] || || 4.717 || 99/98 121/120 176/175 275/273 || || 25 || <<4 -8 14 -2 -14 -22 11 -17 -37 55 23 -3 -54 -91 -41]] || || 4.806 || 91/90 121/120 176/175 245/243 || || 26 || <<1 -13 -2 -6 -31 -23 -6 -13 -53 32 31 -24 -10 -80 -85]] || || 5.065 || 64/63 99/98 121/120 275/273 || || 27 || <<9 -7 4 -10 -15 -32 -19 -47 -57 29 1 -9 -42 -57 -15]] || || 5.170 || 78/77 99/98 176/175 507/500 || || 28 || <<10 2 24 6 -2 -20 10 -25 -40 50 7 -12 -66 -94 -29]] || || 5.251 || 65/64 91/90 121/120 245/243 || || 29 || <<13 7 18 10 -7 -19 -8 -29 -59 22 -1 -42 -34 -86 -61]] || || 5.337 || 65/64 99/98 121/120 275/273 || || 30 || <<5 1 12 -8 -23 -10 5 -30 -55 25 -22 -57 -64 -109 -50]] || || 5.378 || 100/99 225/224 245/243 275/273 || || 31 || <<1 9 -2 16 35 12 -6 22 52 -30 6 48 52 106 62]] || || 5.435 || 64/63 100/99 245/243 275/273 || || 32 || <<6 -12 10 -14 -32 -33 -1 -43 -73 57 9 -30 -74 -127 -59]] || || 7.120 || 176/175 351/350 364/363 540/539 || || 33 || <<12 -2 20 -6 -20 -31 -2 -51 -76 52 -7 -39 -86 -130 -47]] || || 7.303 || 225/224 351/350 364/363 385/384 || || 34 || <<9 -7 26 -10 -37 -32 16 -47 -92 80 1 -60 -118 -200 -91]] || || 9.701 || 245/243 352/351 385/384 625/624 || || 35 || <<12 -2 20 -6 -42 -31 -2 -51 -111 52 -7 -90 -86 -192 -123]] || || 9.808 || 225/224 275/273 385/384 4000/3993 || || 36 || <<13 -15 18 -12 -51 -54 -8 -64 -129 84 24 -63 -96 -210 -132]] || || 11.639 || 176/175 351/350 540/539 33275/33124 || || 37 || <<19 -5 28 -4 -39 -52 -9 -72 -132 79 8 -72 -108 -213 -120]] || || 11.812 || 225/224 351/350 385/384 10648/10647 || || 38 || <<11 -11 22 -22 -55 -43 4 -73 -128 82 -13 -87 -138 -236 -109]] || || 12.215 || 352/351 364/363 540/539 625/624 || || 39 || <<16 -10 34 -8 -56 -53 9 -68 -148 107 16 -93 -140 -283 -164]] || || 14.161 || 352/351 385/384 625/624 4459/4455 || || 40 || <<18 -14 30 -20 -52 -64 -3 -94 -149 109 2 -69 -160 -257 -106]] || || 14.257 || 351/350 364/363 540/539 4096/4095 ||
Original HTML content:
<html><head><title>List of 22et rank two temperaments by complexity</title></head><body>Below are listed rank-two temperaments supported by the <a class="wiki_link" href="/22edo">22edo</a> patent val, below the indicated cutoff in TE badness.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x5-limit temperaments with badness below 0.1"></a><!-- ws:end:WikiTextHeadingRule:0 -->5-limit temperaments with badness below 0.1</h1> Listed is the wedgie and the TE complexity for six temperaments with badness less than 0.1.<br /> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<3 5 1]]<br /> </td> <td>Porcupine<br /> </td> <td>1.663<br /> </td> <td>250/243<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<2 -4 -11]]<br /> </td> <td>Srutal<br /> </td> <td>2.121<br /> </td> <td>2048/2025<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<5 1 -10]]<br /> </td> <td>Magic<br /> </td> <td>2.417<br /> </td> <td>3125/3072<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<7 -3 -21]]<br /> </td> <td>Orson<br /> </td> <td>4.232<br /> </td> <td>2109375/2097152<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<9 -7 -32]]<br /> </td> <td>Escapade<br /> </td> <td>6.243<br /> </td> <td>4294967296/4271484375<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<16 -10 -53]]<br /> </td> <td>Kwazy<br /> </td> <td>10.454<br /> </td> <td>9010162353515625/9007199254740992<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="x7-limit temperaments with badness below 0.06"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-limit temperaments with badness below 0.06</h1> Listed is the wedgie and the TE complexity for 14 temperaments with badness less than 0.06.<br /> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<2 -4 -4 -11 -12 2]]<br /> </td> <td>Pajara<br /> </td> <td>1.953<br /> </td> <td>50/49 64/63<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<6 10 10 2 -1 -5]]<br /> </td> <td>Hedgehog<br /> </td> <td>2.784<br /> </td> <td>50/49 245/243<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<3 5 -6 1 -18 -28]]<br /> </td> <td>Porcupine<br /> </td> <td>2.819<br /> </td> <td>64/63 250/243<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<1 9 -2 12 -6 -30]]<br /> </td> <td>Superpyth<br /> </td> <td>2.874<br /> </td> <td>64/63 245/243<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<8 6 6 -9 -13 -3]]<br /> </td> <td>Doublewide<br /> </td> <td>2.928<br /> </td> <td>50/49 875/864<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<5 1 12 -10 5 25]]<br /> </td> <td>Magic<br /> </td> <td>2.937<br /> </td> <td>225/224 245/243<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<3 5 16 1 17 23]]<br /> </td> <td>Porky<br /> </td> <td>3.362<br /> </td> <td>225/224 250/243<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<7 -3 8 -21 -7 27]]<br /> </td> <td>Orwell<br /> </td> <td>3.685<br /> </td> <td>225/224 1728/1715<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<4 -8 14 -22 11 55]]<br /> </td> <td>Shrutar<br /> </td> <td>5.101<br /> </td> <td>245/243 2048/2025<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<6 -12 10 -33 -1 57]]<br /> </td> <td>Echidna<br /> </td> <td>5.925<br /> </td> <td>1728/1715 2048/2025<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<12 -2 20 -31 -2 52]]<br /> </td> <td>Wizard<br /> </td> <td>6.372<br /> </td> <td>225/224 118098/117649<br /> </td> </tr> <tr> <td>12<br /> </td> <td><<11 -11 22 -43 4 82]]<br /> </td> <td>Hendecatonic<br /> </td> <td>8.442<br /> </td> <td>6144/6125 10976/10935<br /> </td> </tr> <tr> <td>13<br /> </td> <td><<18 -14 30 -64 -3 109]]<br /> </td> <td>Septisuperfourth<br /> </td> <td>11.986<br /> </td> <td>6144/6125 118098/117649<br /> </td> </tr> <tr> <td>14<br /> </td> <td><<23 -13 42 -74 2 134]]<br /> </td> <td>Fifthplus<br /> </td> <td>14.679<br /> </td> <td>65625/65536 420175/419904<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="x11-limit temperaments with badness below 0.05"></a><!-- ws:end:WikiTextHeadingRule:4 -->11-limit temperaments with badness below 0.05</h1> Listed is the wedgie and the TE complexity for 38 temperaments with badness less than 0.05.<br /> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<6 10 10 8 2 -1 -8 -5 -16 -12]]<br /> </td> <td>Hedgehog<br /> </td> <td>2.439<br /> </td> <td>50/49 55/54 99/98<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<3 5 -6 4 1 -18 -4 -28 -8 32]]<br /> </td> <td>Porcupine<br /> </td> <td>2.478<br /> </td> <td>55/54 64/63 100/99<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<2 -4 -4 -12 -11 -12 -26 2 -14 -20]]<br /> </td> <td>Pajara<br /> </td> <td>2.543<br /> </td> <td>50/49 64/63 99/98<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<2 -4 -4 10 -11 -12 9 2 37 42]]<br /> </td> <td>Pajarous<br /> </td> <td>2.718<br /> </td> <td>50/49 55/54 64/63<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<5 1 12 14 -10 5 5 25 29 -2]]<br /> </td> <td>Telepathy<br /> </td> <td>2.864<br /> </td> <td>55/54 99/98 176/175<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<1 9 -2 -6 12 -6 -13 -30 -45 -10]]<br /> </td> <td>Suprapyth<br /> </td> <td>3.011<br /> </td> <td>55/54 64/63 99/98<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<3 5 16 4 1 17 -4 23 -8 -44]]<br /> </td> <td>Porky<br /> </td> <td>3.020<br /> </td> <td>55/54 100/99 225/224<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<8 6 6 18 -9 -13 1 -3 21 30]]<br /> </td> <td>Fleetwood<br /> </td> <td>3.081<br /> </td> <td>50/49 55/54 176/175<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<7 -3 8 2 -21 -7 -21 27 15 -22]]<br /> </td> <td>Orwell<br /> </td> <td>3.242<br /> </td> <td>99/98 121/120 176/175<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<4 -8 -8 -2 -22 -24 -17 4 23 22]]<br /> </td> <td>Hemipaj<br /> </td> <td>3.389<br /> </td> <td>50/49 64/63 121/120<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<8 6 6 -4 -9 -13 -34 -3 -30 -32]]<br /> </td> <td>Doublewide<br /> </td> <td>3.407<br /> </td> <td>50/49 99/98 875/864<br /> </td> </tr> <tr> <td>12<br /> </td> <td><<1 9 -2 16 12 -6 22 -30 6 52]]<br /> </td> <td>Superpyth<br /> </td> <td>3.410<br /> </td> <td>64/63 100/99 245/243<br /> </td> </tr> <tr> <td>13<br /> </td> <td><<1 -13 -2 -6 -23 -6 -13 32 31 -10]]<br /> </td> <td>Quasisupra<br /> </td> <td>3.490<br /> </td> <td>64/63 99/98 121/120<br /> </td> </tr> <tr> <td>14<br /> </td> <td><<10 2 2 6 -20 -25 -25 -1 7 10]]<br /> </td> <td>Astrology<br /> </td> <td>3.575<br /> </td> <td>50/49 121/120 176/175<br /> </td> </tr> <tr> <td>15<br /> </td> <td><<4 14 14 20 13 11 18 -7 -2 8]]<br /> </td> <td><br /> </td> <td>3.637<br /> </td> <td>50/49 99/98 2662/2625<br /> </td> </tr> <tr> <td>16<br /> </td> <td><<5 1 -10 -8 -10 -30 -30 -26 -22 12]]<br /> </td> <td><br /> </td> <td>3.686<br /> </td> <td>64/63 100/99 605/588<br /> </td> </tr> <tr> <td>17<br /> </td> <td><<5 1 12 -8 -10 5 -30 25 -22 -64]]<br /> </td> <td>Magic<br /> </td> <td>3.715<br /> </td> <td>100/99 225/224 245/243<br /> </td> </tr> <tr> <td>18<br /> </td> <td><<0 0 0 22 0 0 35 0 51 62]]<br /> </td> <td><br /> </td> <td>4.028<br /> </td> <td>50/49 64/63 245/243<br /> </td> </tr> <tr> <td>19<br /> </td> <td><<4 -8 14 -2 -22 11 -17 55 23 -54]]<br /> </td> <td>Shrutar<br /> </td> <td>4.530<br /> </td> <td>121/120 176/175 245/243<br /> </td> </tr> <tr> <td>20<br /> </td> <td><<13 7 18 10 -19 -8 -29 22 -1 -34]]<br /> </td> <td><br /> </td> <td>4.554<br /> </td> <td>99/98 121/120 625/616<br /> </td> </tr> <tr> <td>21<br /> </td> <td><<9 -7 4 -10 -32 -19 -47 29 1 -42]]<br /> </td> <td><br /> </td> <td>5.075<br /> </td> <td>99/98 176/175 2560/2541<br /> </td> </tr> <tr> <td>22<br /> </td> <td><<10 2 24 6 -20 10 -25 50 7 -66]]<br /> </td> <td><br /> </td> <td>5.271<br /> </td> <td>121/120 225/224 245/243<br /> </td> </tr> <tr> <td>23<br /> </td> <td><<2 -4 18 -12 -11 23 -26 53 -14 -96]]<br /> </td> <td><br /> </td> <td>5.317<br /> </td> <td>100/99 385/384 1232/1215<br /> </td> </tr> <tr> <td>24<br /> </td> <td><<7 -3 8 -20 -21 -7 -56 27 -36 -84]]<br /> </td> <td><br /> </td> <td>5.605<br /> </td> <td>100/99 225/224 1728/1715<br /> </td> </tr> <tr> <td>25<br /> </td> <td><<6 -12 10 -14 -33 -1 -43 57 9 -74]]<br /> </td> <td>Echidna<br /> </td> <td>5.898<br /> </td> <td>176/175 540/539 896/891<br /> </td> </tr> <tr> <td>26<br /> </td> <td><<12 -2 20 -6 -31 -2 -51 52 -7 -86]]<br /> </td> <td>Wizard<br /> </td> <td>6.421<br /> </td> <td>225/224 385/384 4000/3993<br /> </td> </tr> <tr> <td>27<br /> </td> <td><<11 -11 22 0 -43 4 -38 82 38 -76]]<br /> </td> <td><br /> </td> <td>7.478<br /> </td> <td>121/120 176/175 10976/10935<br /> </td> </tr> <tr> <td>28<br /> </td> <td><<9 -7 26 -10 -32 16 -47 80 1 -118]]<br /> </td> <td><br /> </td> <td>7.718<br /> </td> <td>245/243 385/384 4000/3993<br /> </td> </tr> <tr> <td>29<br /> </td> <td><<13 -15 18 -12 -54 -8 -64 84 24 -96]]<br /> </td> <td><br /> </td> <td>8.886<br /> </td> <td>176/175 540/539 16384/16335<br /> </td> </tr> <tr> <td>30<br /> </td> <td><<11 -11 22 -22 -43 4 -73 82 -13 -138]]<br /> </td> <td><br /> </td> <td>9.219<br /> </td> <td>540/539 896/891 4375/4356<br /> </td> </tr> <tr> <td>31<br /> </td> <td><<19 -5 28 -4 -52 -9 -72 79 8 -108]]<br /> </td> <td><br /> </td> <td>9.470<br /> </td> <td>225/224 385/384 43923/43750<br /> </td> </tr> <tr> <td>32<br /> </td> <td><<16 -10 34 -8 -53 9 -68 107 16 -140]]<br /> </td> <td><br /> </td> <td>10.578<br /> </td> <td>385/384 3388/3375 9801/9800<br /> </td> </tr> <tr> <td>33<br /> </td> <td><<18 -14 30 -20 -64 -3 -94 109 2 -160]]<br /> </td> <td>Septisuperfourth<br /> </td> <td>12.086<br /> </td> <td>540/539 4000/3993 5632/5625<br /> </td> </tr> <tr> <td>34<br /> </td> <td><<25 -17 38 -18 -85 -10 -115 136 17 -182]]<br /> </td> <td><br /> </td> <td>15.106<br /> </td> <td>540/539 5632/5625 35937/35840<br /> </td> </tr> <tr> <td>35<br /> </td> <td><<28 -12 54 -14 -84 7 -119 159 9 -226]]<br /> </td> <td><br /> </td> <td>16.904<br /> </td> <td>385/384 9801/9800 456533/455625<br /> </td> </tr> <tr> <td>36<br /> </td> <td><<30 -16 50 -26 -95 -5 -145 161 -5 -246]]<br /> </td> <td><br /> </td> <td>18.435<br /> </td> <td>540/539 4000/3993 65625/65536<br /> </td> </tr> <tr> <td>37<br /> </td> <td><<34 -24 64 -28 -117 6 -162 216 18 -300]]<br /> </td> <td><br /> </td> <td>22.572<br /> </td> <td>5632/5625 9801/9800 41503/41472<br /> </td> </tr> <tr> <td>38<br /> </td> <td><<46 -26 84 -34 -148 4 -213 268 11 -386]]<br /> </td> <td><br /> </td> <td>28.911<br /> </td> <td>9801/9800 41503/41472 65625/65536<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="x13-limit temperaments with badness below 0.04"></a><!-- ws:end:WikiTextHeadingRule:6 -->13-limit temperaments with badness below 0.04</h1> Listed is the wedgie and the TE complexity for 40 temperaments with badness less than 0.04.<br /> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Complexity<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]]<br /> </td> <td>Hedgehog<br /> </td> <td>2.196<br /> </td> <td>50/49 55/54 65/63 99/98<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]]<br /> </td> <td>Pajarous<br /> </td> <td>2.481<br /> </td> <td>50/49 55/54 64/63 65/63<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]]<br /> </td> <td>Porkpie<br /> </td> <td>2.487<br /> </td> <td>55/54 64/63 65/63 100/99<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<2 -4 -4 -12 4 -11 -12 -26 -1 2 -14 24 -20 26 58]]<br /> </td> <td>Pajara<br /> </td> <td>2.588<br /> </td> <td>50/49 64/63 65/63 99/98<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]]<br /> </td> <td>Fleetwood<br /> </td> <td>2.861<br /> </td> <td>50/49 55/54 65/63 176/175<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]]<br /> </td> <td>Blair<br /> </td> <td>2.911<br /> </td> <td>65/64 78/77 91/90 99/98<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]]<br /> </td> <td>Telepathy<br /> </td> <td>2.980<br /> </td> <td>55/54 65/64 91/90 99/98<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<3 5 16 4 17 1 17 -4 16 23 -8 21 -44 -11 44]]<br /> </td> <td><br /> </td> <td>3.040<br /> </td> <td>55/54 65/63 100/99 225/224<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]]<br /> </td> <td><br /> </td> <td>3.151<br /> </td> <td>55/54 64/63 65/63 364/363<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<2 -4 -4 -12 -18 -11 -12 -26 -36 2 -14 -27 -20 -36 -18]]<br /> </td> <td><br /> </td> <td>3.161<br /> </td> <td>50/49 64/63 99/98 975/968<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<1 -13 -2 -6 -9 -23 -6 -13 -18 32 31 27 -10 -18 -9]]<br /> </td> <td><br /> </td> <td>3.168<br /> </td> <td>64/63 78/77 91/90 121/120<br /> </td> </tr> <tr> <td>12<br /> </td> <td><<5 1 12 14 21 -10 5 5 15 25 29 45 -2 15 21]]<br /> </td> <td><br /> </td> <td>3.194<br /> </td> <td>55/54 65/63 99/98 176/175<br /> </td> </tr> <tr> <td>13<br /> </td> <td><<3 5 -6 4 17 1 -18 -4 16 -28 -8 21 32 70 44]]<br /> </td> <td><br /> </td> <td>3.195<br /> </td> <td>55/54 64/63 91/90 100/99<br /> </td> </tr> <tr> <td>14<br /> </td> <td><<1 9 -2 16 13 12 -6 22 17 -30 6 -3 52 44 -14]]<br /> </td> <td><br /> </td> <td>3.228<br /> </td> <td>64/63 78/77 91/90 100/99<br /> </td> </tr> <tr> <td>15<br /> </td> <td><<1 9 -2 -6 13 12 -6 -13 17 -30 -45 -3 -10 44 67]]<br /> </td> <td><br /> </td> <td>3.234<br /> </td> <td>55/54 64/63 91/90 99/98<br /> </td> </tr> <tr> <td>16<br /> </td> <td><<5 1 -10 -8 -1 -10 -30 -30 -20 -26 -22 -6 12 34 26]]<br /> </td> <td><br /> </td> <td>3.296<br /> </td> <td>64/63 65/63 100/99 169/165<br /> </td> </tr> <tr> <td>17<br /> </td> <td><<3 5 16 4 -5 1 17 -4 -19 23 -8 -30 -44 -73 -32]]<br /> </td> <td><br /> </td> <td>3.380<br /> </td> <td>55/54 65/64 91/90 100/99<br /> </td> </tr> <tr> <td>18<br /> </td> <td><<5 1 12 -8 -1 -10 5 -30 -20 25 -22 -6 -64 -47 26]]<br /> </td> <td><br /> </td> <td>3.413<br /> </td> <td>65/64 78/77 91/90 100/99<br /> </td> </tr> <tr> <td>19<br /> </td> <td><<0 0 0 0 22 0 0 0 35 0 0 51 0 62 76]]<br /> </td> <td><br /> </td> <td>3.436<br /> </td> <td>50/49 55/54 64/63 99/98<br /> </td> </tr> <tr> <td>20<br /> </td> <td><<4 -8 -8 -2 -14 -22 -24 -17 -37 4 23 -3 22 -10 -41]]<br /> </td> <td><br /> </td> <td>3.467<br /> </td> <td>50/49 64/63 78/77 121/120<br /> </td> </tr> <tr> <td>21<br /> </td> <td><<10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]]<br /> </td> <td><br /> </td> <td>3.495<br /> </td> <td>50/49 65/64 78/77 121/120<br /> </td> </tr> <tr> <td>22<br /> </td> <td><<8 6 6 -4 -6 -9 -13 -34 -39 -3 -30 -36 -32 -39 -6]]<br /> </td> <td><br /> </td> <td>3.603<br /> </td> <td>50/49 78/77 99/98 875/864<br /> </td> </tr> <tr> <td>23<br /> </td> <td><<6 10 10 8 -10 2 -1 -8 -38 -5 -16 -60 -12 -65 -64]]<br /> </td> <td><br /> </td> <td>3.844<br /> </td> <td>50/49 55/54 99/98 975/968<br /> </td> </tr> <tr> <td>24<br /> </td> <td><<7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73]]<br /> </td> <td><br /> </td> <td>4.717<br /> </td> <td>99/98 121/120 176/175 275/273<br /> </td> </tr> <tr> <td>25<br /> </td> <td><<4 -8 14 -2 -14 -22 11 -17 -37 55 23 -3 -54 -91 -41]]<br /> </td> <td><br /> </td> <td>4.806<br /> </td> <td>91/90 121/120 176/175 245/243<br /> </td> </tr> <tr> <td>26<br /> </td> <td><<1 -13 -2 -6 -31 -23 -6 -13 -53 32 31 -24 -10 -80 -85]]<br /> </td> <td><br /> </td> <td>5.065<br /> </td> <td>64/63 99/98 121/120 275/273<br /> </td> </tr> <tr> <td>27<br /> </td> <td><<9 -7 4 -10 -15 -32 -19 -47 -57 29 1 -9 -42 -57 -15]]<br /> </td> <td><br /> </td> <td>5.170<br /> </td> <td>78/77 99/98 176/175 507/500<br /> </td> </tr> <tr> <td>28<br /> </td> <td><<10 2 24 6 -2 -20 10 -25 -40 50 7 -12 -66 -94 -29]]<br /> </td> <td><br /> </td> <td>5.251<br /> </td> <td>65/64 91/90 121/120 245/243<br /> </td> </tr> <tr> <td>29<br /> </td> <td><<13 7 18 10 -7 -19 -8 -29 -59 22 -1 -42 -34 -86 -61]]<br /> </td> <td><br /> </td> <td>5.337<br /> </td> <td>65/64 99/98 121/120 275/273<br /> </td> </tr> <tr> <td>30<br /> </td> <td><<5 1 12 -8 -23 -10 5 -30 -55 25 -22 -57 -64 -109 -50]]<br /> </td> <td><br /> </td> <td>5.378<br /> </td> <td>100/99 225/224 245/243 275/273<br /> </td> </tr> <tr> <td>31<br /> </td> <td><<1 9 -2 16 35 12 -6 22 52 -30 6 48 52 106 62]]<br /> </td> <td><br /> </td> <td>5.435<br /> </td> <td>64/63 100/99 245/243 275/273<br /> </td> </tr> <tr> <td>32<br /> </td> <td><<6 -12 10 -14 -32 -33 -1 -43 -73 57 9 -30 -74 -127 -59]]<br /> </td> <td><br /> </td> <td>7.120<br /> </td> <td>176/175 351/350 364/363 540/539<br /> </td> </tr> <tr> <td>33<br /> </td> <td><<12 -2 20 -6 -20 -31 -2 -51 -76 52 -7 -39 -86 -130 -47]]<br /> </td> <td><br /> </td> <td>7.303<br /> </td> <td>225/224 351/350 364/363 385/384<br /> </td> </tr> <tr> <td>34<br /> </td> <td><<9 -7 26 -10 -37 -32 16 -47 -92 80 1 -60 -118 -200 -91]]<br /> </td> <td><br /> </td> <td>9.701<br /> </td> <td>245/243 352/351 385/384 625/624<br /> </td> </tr> <tr> <td>35<br /> </td> <td><<12 -2 20 -6 -42 -31 -2 -51 -111 52 -7 -90 -86 -192 -123]]<br /> </td> <td><br /> </td> <td>9.808<br /> </td> <td>225/224 275/273 385/384 4000/3993<br /> </td> </tr> <tr> <td>36<br /> </td> <td><<13 -15 18 -12 -51 -54 -8 -64 -129 84 24 -63 -96 -210 -132]]<br /> </td> <td><br /> </td> <td>11.639<br /> </td> <td>176/175 351/350 540/539 33275/33124<br /> </td> </tr> <tr> <td>37<br /> </td> <td><<19 -5 28 -4 -39 -52 -9 -72 -132 79 8 -72 -108 -213 -120]]<br /> </td> <td><br /> </td> <td>11.812<br /> </td> <td>225/224 351/350 385/384 10648/10647<br /> </td> </tr> <tr> <td>38<br /> </td> <td><<11 -11 22 -22 -55 -43 4 -73 -128 82 -13 -87 -138 -236 -109]]<br /> </td> <td><br /> </td> <td>12.215<br /> </td> <td>352/351 364/363 540/539 625/624<br /> </td> </tr> <tr> <td>39<br /> </td> <td><<16 -10 34 -8 -56 -53 9 -68 -148 107 16 -93 -140 -283 -164]]<br /> </td> <td><br /> </td> <td>14.161<br /> </td> <td>352/351 385/384 625/624 4459/4455<br /> </td> </tr> <tr> <td>40<br /> </td> <td><<18 -14 30 -20 -52 -64 -3 -94 -149 109 2 -69 -160 -257 -106]]<br /> </td> <td><br /> </td> <td>14.257<br /> </td> <td>351/350 364/363 540/539 4096/4095<br /> </td> </tr> </table> </body></html>