User:Inthar/Style guide
This page documents my xen math notation and its differences from conventional xen notation.
Variables
- Capital italicized Latin letters may denote scales written cumulatively.
- S(n) = 100n cents
- Lowercase italicized Latin letters may denote (rotational equivalence classes of) scales written as steps, or abstract scale words. For example:
- s(a, b, c) = abacaba
- [math]\displaystyle{ \sum_{n=a}^{b-1}s(n) = S(b)-S(a) \ \text{if} \ s(n) := S(n+1)-S(n) }[/math]
- Bolded variables denote interval sizes (especially letters of scale words) and elements of lattices.
- 5L 2s
- Sans serif function names are scale constructions, or more generally functions named more verbosely than in conventional math notation.
- [math]\displaystyle{ \mathsf{MOS}(5,2;6)(\mathbf{L}, \mathbf{s}) = \mathbf{LLLsLLs} }[/math]
- Blackdye is [math]\displaystyle{ \mathsf{Fl}(\mathrm{Pyth}[5]; 10/9) }[/math]
Words
Algebraic structures
- [math]\displaystyle{ \mathrm{JI}\langle p_1, ..., p_r \rangle }[/math] is the p1.[...].pr subgroup, the subgroup of [math]\displaystyle{ (\mathbb{Q}_{\gt 0}, \cdot) }[/math] generated by rationals [math]\displaystyle{ p_1, ..., p_r. }[/math]
- If R is a commutative ring with 1, [math]\displaystyle{ R^r\langle a_1, ..., a_r\rangle }[/math] is the rank-r free R-module generated by basis elements [math]\displaystyle{ a_1, ..., a_r. }[/math] Example: [math]\displaystyle{ \mathbb{Z}^3\langle \mathbf{L}, \mathbf{m}, \mathbf{s}\rangle }[/math]
Discrete sets
- For [math]\displaystyle{ k \in \mathbb{R} }[/math] and [math]\displaystyle{ n\in \mathbb{Z}_{\gt 0}, }[/math] [math]\displaystyle{ [n]_k }[/math] denotes [math]\displaystyle{ \{k, k+1, ..., k+n-1\}. }[/math] I may also use [math]\displaystyle{ [i:j] }[/math] for [math]\displaystyle{ [j-i]_i. }[/math]
Miscellaneous
- [math]\displaystyle{ \log }[/math] is base e.
- Temperament names are.capitalized.