72edo

Revision as of 15:03, 3 February 2012 by Wikispaces>genewardsmith (**Imported revision 298266014 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-02-03 15:03:37 UTC.
The original revision id was 298266014.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]
----
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music.

Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.

72-tone equal temperament approximates [[11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[17-limit]], and is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.

72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.

=Harmonic Scale= 
Mode 8 of the harmonic series -- [[overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).

|| Overtones in "Mode 8": || 8 ||   || 9 ||   || 10 ||   || 11 ||   || 12 ||   || 13 ||   || 14 ||   || 15 ||   || 16 ||
|| ...as JI Ratio from 1/1: || 1/1 ||   || 9/8 ||   || 5/4 ||   || 11/8 ||   || 3/2 ||   || 13/8 ||   || 7/4 ||   || 15/8 ||   || 2/1 ||
|| ...in cents: || 0 ||   || 203.9 ||   || 386.3 ||   || 551.3 ||   || 702.0 ||   || 840.5 ||   || 968.8 ||   || 1088.3 ||   || 1200.0 ||
|| Nearest degree of 72edo: || 0 ||   || 12 ||   || 23 ||   || 33 ||   || 42 ||   || 50 ||   || 58 ||   || 65 ||   || 72 ||
|| ...in cents: || 0 ||   || 200.0 ||   || 383.3 ||   || 550.0 ||   || 700.0 ||   || 833.3 ||   || 966.7 ||   || 1083.3 ||   || 1200.0 ||
|| Steps as Freq. Ratio: ||   || 9:8 ||   || 10:9 ||   || 11:10 ||   || 12:11 ||   || 13:12 ||   || 14:13 ||   || 15:14 ||   || 16:15 ||   ||
|| ...in cents: ||   || 203.9 ||   || 182.4 ||   || 165.0 ||   || 150.6 ||   || 138.6 ||   || 128.3 ||   || 119.4 ||   || 111.7 ||   ||
|| Nearest degree of 72edo: ||   || 12 ||   || 11 ||   || 10 ||   || 9 ||   || 8 ||   || 8 ||   || 7 ||   || 7 ||   ||
|| ...in cents: ||   || 200.0 ||   || 183.3 ||   || 166.7 ||   || 150.0 ||   || 133.3 ||   || 133.3 ||   || 116.7 ||   || 116.7 ||   ||

=Intervals= 
|| degrees || cents value || approximate ratios (17-limit) ||
|| 0 || 0 || 1/1 ||
|| 1 || 16.667 ||   ||
|| 2 || 33.333 ||   ||
|| 3 || 50 ||   ||
|| 4 || 66.667 ||   ||
|| 5 || 83.333 ||   ||
|| 6 || 100 || 17/16, 18/17 ||
|| 7 || 116.667 || 16/15. 15/14 ||
|| 8 || 133.333 || 13/12, 14/13 ||
|| 9 || 150 || 12/11 ||
|| 10 || 166.667 || 11/10 ||
|| 11 || 183.333 || 10/9 ||
|| 12 || 200 || 9/8 ||
|| 13 || 216.667 || 17/15 ||
|| 14 || 233.333 || 8/7 ||
|| 15 || 250 || 15/13 ||
|| 16 || 266.667 || 7/6 ||
|| 17 || 283.333 || 13/11 ||
|| 18 || 300 ||   ||
|| 19 || 316.667 || 6/5 ||
|| 20 || 333.333 || 17/14 ||
|| 21 || 350 || 11/9 ||
|| 22 || 366.667 ||   ||
|| 23 || 383.333 || 5/4 ||
|| 24 || 400 ||   ||
|| 25 || 416.667 || 14/11 ||
|| 26 || 433.333 || 9/7 ||
|| 27 || 450 || 13/10, 22/17 ||
|| 28 || 466.667 || 17/13 ||
|| 29 || 483.333 ||   ||
|| 30 || 500 || 4/3 ||
|| 31 || 516.667 ||   ||
|| 32 || 533.333 || 15/11 ||
|| 33 || 550 || 11/8 ||
|| 34 || 566.667 || 18/13 ||
|| 35 || 583.333 || 7/5 ||
|| 36 || 600 || 17/12, 24/17 ||
|| 37 || 616.667 || 10/7 ||
|| 38 || 633.333 || 13/9 ||
|| 39 || 650 || 16/11 ||
|| 40 || 666.667 || 22/15 ||
|| 41 || 683.333 ||   ||
|| 42 || 700 || 3/2 ||
|| 43 || 716.667 ||   ||
|| 44 || 733.333 || 26/17 ||
|| 45 || 750 || 20/13, 17/11 ||
|| 46 || 766.667 || 14/9 ||
|| 47 || 783.333 || 11/7 ||
|| 48 || 800 ||   ||
|| 49 || 816.667 || 8/5 ||
|| 50 || 833.333 ||   ||
|| 51 || 850 || 18/11 ||
|| 52 || 866.667 || 28/17 ||
|| 53 || 883.333 || 5/3 ||
|| 54 || 900 ||   ||
|| 55 || 916.667 || 22/13 ||
|| 56 || 933.333 || 12/7 ||
|| 57 || 950 || 26/15 ||
|| 58 || 966.667 || 7/4 ||
|| 59 || 983.333 || 30/17 ||
|| 60 || 1000 || 16/9 ||
|| 61 || 1016.667 || 9/5 ||
|| 62 || 1033.333 || 20/11 ||
|| 63 || 1050 || 11/6 ||
|| 64 || 1066.667 || 24/13, 13/7 ||
|| 65 || 1083.333 || 15/8, 28/15 ||
|| 66 || 1100 || 32/17, 17/9 ||
|| 67 || 1116.667 ||   ||
|| 68 || 1133.333 ||   ||
|| 69 || 1150 ||   ||
|| 70 || 1166.667 ||   ||
|| 71 || 1183.333 ||   ||
|| 72 || 1200 || 2/1 ||
= = 
=Linear temperaments= 
||~ Periods per octave ||~ Generator ||~ Names ||
|| 1 || 1\72 || [[quincy]] ||
|| 1 || 5\72 ||   ||
|| 1 || 7\72 || [[miracle]]/benediction/manna ||
|| 1 || 11\72 ||   ||
|| 1 || 13\72 ||   ||
|| 1 || 17\72 || [[neominor]] ||
|| 1 || 19\72 || [[catakleismic]] ||
|| 1 || 23\72 ||   ||
|| 1 || 25\72 || [[sqrtphi]] ||
|| 1 || 29\72 ||   ||
|| 1 || 31\72 || [[marvo]]/zarvo ||
|| 1 || 35\72 || [[cotritone]] ||
|| 2 || 1\72 ||   ||
|| 2 || 5\72 || [[harry]] ||
|| 2 || 7\72 ||   ||
|| 2 || 11\72 || [[unidec]]/hendec ||
|| 2 || 13\72 || [[wizard]]/lizard/gizzard ||
|| 2 || 17\72 ||   ||
|| 3 || 1\72 ||   ||
|| 3 || 5\72 || [[tritikleismic]] ||
|| 3 || 7\72 ||   ||
|| 3 || 11\72 || [[mirkat]] ||
|| 4 || 1\72 || [[quadritikleismic]] ||
|| 4 || 5\72 ||   ||
|| 4 || 7\72 ||   ||
|| 6 || 1\72 ||   ||
|| 6 || 5\72 ||   ||
|| 8 || 1\72 || [[octoid]] ||
|| 8 || 2\72 || [[octowerck]] ||
|| 8 || 4\72 ||   ||
|| 9 || 1\72 ||   ||
|| 9 || 3\72 || [[ennealimmal]]/ennealimmic ||
|| 12 || 1\72 || [[compton]] ||
|| 18 || 1\72 || [[hemiennealimmal]] ||
|| 24 || 1\72 || [[hours]] ||
|| 36 || 1\72 ||   ||

=Z function= 
72edo is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.

[[image:plot72.png]]

=Music= 
[[http://www.archive.org/details/Kotekant|Kotekant]] [[http://www.archive.org/download/Kotekant/kotekant.mp3|play]] by [[Gene Ward Smith]]

=Scales=
[[smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]]
[[blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]]
[[keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]]
[[genus24255et72|Euler(24255) genus in 72 equal]]

=External links= 
* [[http://en.wikipedia.org/wiki/72_tone_equal_temperament|Wikipedia article on 72edo]]
* [[http://orthodoxwiki.org/Byzantine_Chant|OrthodoxWiki Article on Byzantine chant, which uses 72edo]]
* [[http://en.wikipedia.org/wiki/Joe_Maneri|Wikipedia article on Joe Maneri (1927-2009)]]
* [[http://www.ekmelic-music.org/en/index.htmmusik/|Ekmelic Music Society/Gesellschaft für Ekmelische Musik]], a group of composers and researchers dedicated to 72edo music
* [[http://sonic-arts.org/tagawa/72edo.htm|Rick Tagawa's 72edo site]], including theory and composers' list
* [[http://soundcloud.com/dawiertx|Danny Wier, composer and musician who specializes in 72-edo]]

Original HTML content:

<html><head><title>72edo</title></head><body><!-- ws:start:WikiTextTocRule:16:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --><a href="#Harmonic Scale">Harmonic Scale</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#toc2"> </a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Linear temperaments">Linear temperaments</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#Z function">Z function</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Scales">Scales</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --> | <a href="#External links">External links</a><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: -->
<!-- ws:end:WikiTextTocRule:25 --><hr />
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or <em>moria</em>. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of <a class="wiki_link" href="/24edo">24-tone equal temperament</a>, a common and standard tuning of <a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian">Arabic</a> music, and has itself been used to tune Turkish music.<br />
<br />
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with <a class="wiki_link" href="/96edo">96-edo</a>), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.<br />
<br />
72-tone equal temperament approximates <a class="wiki_link" href="/11-limit">11-limit just intonation</a> exceptionally well, is consistent in the <a class="wiki_link" href="/17-limit">17-limit</a>, and is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">Zeta integral tuning</a>. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.<br />
<br />
72 is an excellent tuning for <a class="wiki_link" href="/Gamelismic%20clan">miracle temperament</a>, especially the 11-limit version, and the related rank three temperament <a class="wiki_link" href="/Marvel%20family#Prodigy">prodigy</a>, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Harmonic Scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->Harmonic Scale</h1>
 Mode 8 of the harmonic series -- <a class="wiki_link" href="/overtone%20scales">overtones 8 through 16</a>, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).<br />
<br />


<table class="wiki_table">
    <tr>
        <td>Overtones in &quot;Mode 8&quot;:<br />
</td>
        <td>8<br />
</td>
        <td><br />
</td>
        <td>9<br />
</td>
        <td><br />
</td>
        <td>10<br />
</td>
        <td><br />
</td>
        <td>11<br />
</td>
        <td><br />
</td>
        <td>12<br />
</td>
        <td><br />
</td>
        <td>13<br />
</td>
        <td><br />
</td>
        <td>14<br />
</td>
        <td><br />
</td>
        <td>15<br />
</td>
        <td><br />
</td>
        <td>16<br />
</td>
    </tr>
    <tr>
        <td>...as JI Ratio from 1/1:<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td>9/8<br />
</td>
        <td><br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td>11/8<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
        <td>13/8<br />
</td>
        <td><br />
</td>
        <td>7/4<br />
</td>
        <td><br />
</td>
        <td>15/8<br />
</td>
        <td><br />
</td>
        <td>2/1<br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td>0<br />
</td>
        <td><br />
</td>
        <td>203.9<br />
</td>
        <td><br />
</td>
        <td>386.3<br />
</td>
        <td><br />
</td>
        <td>551.3<br />
</td>
        <td><br />
</td>
        <td>702.0<br />
</td>
        <td><br />
</td>
        <td>840.5<br />
</td>
        <td><br />
</td>
        <td>968.8<br />
</td>
        <td><br />
</td>
        <td>1088.3<br />
</td>
        <td><br />
</td>
        <td>1200.0<br />
</td>
    </tr>
    <tr>
        <td>Nearest degree of 72edo:<br />
</td>
        <td>0<br />
</td>
        <td><br />
</td>
        <td>12<br />
</td>
        <td><br />
</td>
        <td>23<br />
</td>
        <td><br />
</td>
        <td>33<br />
</td>
        <td><br />
</td>
        <td>42<br />
</td>
        <td><br />
</td>
        <td>50<br />
</td>
        <td><br />
</td>
        <td>58<br />
</td>
        <td><br />
</td>
        <td>65<br />
</td>
        <td><br />
</td>
        <td>72<br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td>0<br />
</td>
        <td><br />
</td>
        <td>200.0<br />
</td>
        <td><br />
</td>
        <td>383.3<br />
</td>
        <td><br />
</td>
        <td>550.0<br />
</td>
        <td><br />
</td>
        <td>700.0<br />
</td>
        <td><br />
</td>
        <td>833.3<br />
</td>
        <td><br />
</td>
        <td>966.7<br />
</td>
        <td><br />
</td>
        <td>1083.3<br />
</td>
        <td><br />
</td>
        <td>1200.0<br />
</td>
    </tr>
    <tr>
        <td>Steps as Freq. Ratio:<br />
</td>
        <td><br />
</td>
        <td>9:8<br />
</td>
        <td><br />
</td>
        <td>10:9<br />
</td>
        <td><br />
</td>
        <td>11:10<br />
</td>
        <td><br />
</td>
        <td>12:11<br />
</td>
        <td><br />
</td>
        <td>13:12<br />
</td>
        <td><br />
</td>
        <td>14:13<br />
</td>
        <td><br />
</td>
        <td>15:14<br />
</td>
        <td><br />
</td>
        <td>16:15<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td><br />
</td>
        <td>203.9<br />
</td>
        <td><br />
</td>
        <td>182.4<br />
</td>
        <td><br />
</td>
        <td>165.0<br />
</td>
        <td><br />
</td>
        <td>150.6<br />
</td>
        <td><br />
</td>
        <td>138.6<br />
</td>
        <td><br />
</td>
        <td>128.3<br />
</td>
        <td><br />
</td>
        <td>119.4<br />
</td>
        <td><br />
</td>
        <td>111.7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>Nearest degree of 72edo:<br />
</td>
        <td><br />
</td>
        <td>12<br />
</td>
        <td><br />
</td>
        <td>11<br />
</td>
        <td><br />
</td>
        <td>10<br />
</td>
        <td><br />
</td>
        <td>9<br />
</td>
        <td><br />
</td>
        <td>8<br />
</td>
        <td><br />
</td>
        <td>8<br />
</td>
        <td><br />
</td>
        <td>7<br />
</td>
        <td><br />
</td>
        <td>7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>...in cents:<br />
</td>
        <td><br />
</td>
        <td>200.0<br />
</td>
        <td><br />
</td>
        <td>183.3<br />
</td>
        <td><br />
</td>
        <td>166.7<br />
</td>
        <td><br />
</td>
        <td>150.0<br />
</td>
        <td><br />
</td>
        <td>133.3<br />
</td>
        <td><br />
</td>
        <td>133.3<br />
</td>
        <td><br />
</td>
        <td>116.7<br />
</td>
        <td><br />
</td>
        <td>116.7<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h1>
 

<table class="wiki_table">
    <tr>
        <td>degrees<br />
</td>
        <td>cents value<br />
</td>
        <td>approximate ratios (17-limit)<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>16.667<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>33.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>50<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>66.667<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>83.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>100<br />
</td>
        <td>17/16, 18/17<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>116.667<br />
</td>
        <td>16/15. 15/14<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>133.333<br />
</td>
        <td>13/12, 14/13<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>150<br />
</td>
        <td>12/11<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>166.667<br />
</td>
        <td>11/10<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>183.333<br />
</td>
        <td>10/9<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>200<br />
</td>
        <td>9/8<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>216.667<br />
</td>
        <td>17/15<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>233.333<br />
</td>
        <td>8/7<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>250<br />
</td>
        <td>15/13<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>266.667<br />
</td>
        <td>7/6<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>283.333<br />
</td>
        <td>13/11<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>300<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>316.667<br />
</td>
        <td>6/5<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>333.333<br />
</td>
        <td>17/14<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>350<br />
</td>
        <td>11/9<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>366.667<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>383.333<br />
</td>
        <td>5/4<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>400<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>416.667<br />
</td>
        <td>14/11<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>433.333<br />
</td>
        <td>9/7<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>450<br />
</td>
        <td>13/10, 22/17<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>466.667<br />
</td>
        <td>17/13<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>483.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>500<br />
</td>
        <td>4/3<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>516.667<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>533.333<br />
</td>
        <td>15/11<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>550<br />
</td>
        <td>11/8<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>566.667<br />
</td>
        <td>18/13<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>583.333<br />
</td>
        <td>7/5<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>600<br />
</td>
        <td>17/12, 24/17<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>616.667<br />
</td>
        <td>10/7<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>633.333<br />
</td>
        <td>13/9<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>650<br />
</td>
        <td>16/11<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>666.667<br />
</td>
        <td>22/15<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>683.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>700<br />
</td>
        <td>3/2<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>716.667<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>733.333<br />
</td>
        <td>26/17<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>750<br />
</td>
        <td>20/13, 17/11<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>766.667<br />
</td>
        <td>14/9<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>783.333<br />
</td>
        <td>11/7<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>800<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>816.667<br />
</td>
        <td>8/5<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>833.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>850<br />
</td>
        <td>18/11<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>866.667<br />
</td>
        <td>28/17<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>883.333<br />
</td>
        <td>5/3<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>900<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>916.667<br />
</td>
        <td>22/13<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>933.333<br />
</td>
        <td>12/7<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>950<br />
</td>
        <td>26/15<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>966.667<br />
</td>
        <td>7/4<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>983.333<br />
</td>
        <td>30/17<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>1000<br />
</td>
        <td>16/9<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>1016.667<br />
</td>
        <td>9/5<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>1033.333<br />
</td>
        <td>20/11<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>1050<br />
</td>
        <td>11/6<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>1066.667<br />
</td>
        <td>24/13, 13/7<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>1083.333<br />
</td>
        <td>15/8, 28/15<br />
</td>
    </tr>
    <tr>
        <td>66<br />
</td>
        <td>1100<br />
</td>
        <td>32/17, 17/9<br />
</td>
    </tr>
    <tr>
        <td>67<br />
</td>
        <td>1116.667<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>68<br />
</td>
        <td>1133.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>69<br />
</td>
        <td>1150<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>70<br />
</td>
        <td>1166.667<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>71<br />
</td>
        <td>1183.333<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>72<br />
</td>
        <td>1200<br />
</td>
        <td>2/1<br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><!-- ws:end:WikiTextHeadingRule:4 --> </h1>
 <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Linear temperaments"></a><!-- ws:end:WikiTextHeadingRule:6 -->Linear temperaments</h1>
 

<table class="wiki_table">
    <tr>
        <th>Periods per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Names<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/quincy">quincy</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>5\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>7\72<br />
</td>
        <td><a class="wiki_link" href="/miracle">miracle</a>/benediction/manna<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>17\72<br />
</td>
        <td><a class="wiki_link" href="/neominor">neominor</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>19\72<br />
</td>
        <td><a class="wiki_link" href="/catakleismic">catakleismic</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>23\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>25\72<br />
</td>
        <td><a class="wiki_link" href="/sqrtphi">sqrtphi</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>29\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>31\72<br />
</td>
        <td><a class="wiki_link" href="/marvo">marvo</a>/zarvo<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>35\72<br />
</td>
        <td><a class="wiki_link" href="/cotritone">cotritone</a><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>5\72<br />
</td>
        <td><a class="wiki_link" href="/harry">harry</a><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>7\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>11\72<br />
</td>
        <td><a class="wiki_link" href="/unidec">unidec</a>/hendec<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>13\72<br />
</td>
        <td><a class="wiki_link" href="/wizard">wizard</a>/lizard/gizzard<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>17\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>5\72<br />
</td>
        <td><a class="wiki_link" href="/tritikleismic">tritikleismic</a><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>7\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>11\72<br />
</td>
        <td><a class="wiki_link" href="/mirkat">mirkat</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/quadritikleismic">quadritikleismic</a><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>5\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>7\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>5\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/octoid">octoid</a><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>2\72<br />
</td>
        <td><a class="wiki_link" href="/octowerck">octowerck</a><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>4\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>3\72<br />
</td>
        <td><a class="wiki_link" href="/ennealimmal">ennealimmal</a>/ennealimmic<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/compton">compton</a><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/hemiennealimmal">hemiennealimmal</a><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1\72<br />
</td>
        <td><a class="wiki_link" href="/hours">hours</a><br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>1\72<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Z function"></a><!-- ws:end:WikiTextHeadingRule:8 -->Z function</h1>
 72edo is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a>, as well as being a peak and gap edo, and the maximum value of the <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function">Z function</a> in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.<br />
<br />
<!-- ws:start:WikiTextLocalImageRule:1277:&lt;img src=&quot;/file/view/plot72.png/219772696/plot72.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /><!-- ws:end:WikiTextLocalImageRule:1277 --><br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:10 -->Music</h1>
 <a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow">Kotekant</a> <a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:12 -->Scales</h1>
<a class="wiki_link" href="/smithgw72a">smithgw72a</a>, <a class="wiki_link" href="/smithgw72b">smithgw72b</a>, <a class="wiki_link" href="/smithgw72c">smithgw72c</a>, <a class="wiki_link" href="/smithgw72d">smithgw72d</a>, <a class="wiki_link" href="/smithgw72e">smithgw72e</a>, <a class="wiki_link" href="/smithgw72f">smithgw72f</a>, <a class="wiki_link" href="/smithgw72g">smithgw72g</a>, <a class="wiki_link" href="/smithgw72h">smithgw72h</a>, <a class="wiki_link" href="/smithgw72i">smithgw72i</a>, <a class="wiki_link" href="/smithgw72j">smithgw72j</a><br />
<a class="wiki_link" href="/blackjack">blackjack</a>, <a class="wiki_link" href="/miracle_8">miracle_8</a>, <a class="wiki_link" href="/miracle_10">miracle_10</a>, [[miracle_12], <a class="wiki_link" href="/miracle_12a">miracle_12a</a>, <a class="wiki_link" href="/miracle_24hi">miracle_24hi</a>, <a class="wiki_link" href="/miracle_24lo">miracle_24lo</a><br />
<a class="wiki_link" href="/keenanmarvel">keenanmarvel</a>, <a class="wiki_link" href="/xenakis_chrome">xenakis_chrome</a>, <a class="wiki_link" href="/xenakis_diat">xenakis_diat</a>, <a class="wiki_link" href="/xenakis_schrome">xenakis_schrome</a><br />
<a class="wiki_link" href="/genus24255et72">Euler(24255) genus in 72 equal</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="External links"></a><!-- ws:end:WikiTextHeadingRule:14 -->External links</h1>
 <ul><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow">Wikipedia article on 72edo</a></li><li><a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow">OrthodoxWiki Article on Byzantine chant, which uses 72edo</a></li><li><a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow">Wikipedia article on Joe Maneri (1927-2009)</a></li><li><a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow">Ekmelic Music Society/Gesellschaft für Ekmelische Musik</a>, a group of composers and researchers dedicated to 72edo music</li><li><a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow">Rick Tagawa's 72edo site</a>, including theory and composers' list</li><li><a class="wiki_link_ext" href="http://soundcloud.com/dawiertx" rel="nofollow">Danny Wier, composer and musician who specializes in 72-edo</a></li></ul></body></html>