5L 8s
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author JosephRuhf and made on 2015-10-19 16:13:34 UTC.
- The original revision id was 563019239.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a "third". However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the "minor third/major sixth") are typically the most consonant harmonies of the scale. || (2+3)/13 || || || 184.615+<span style="font-size: 12.8000001907349px;">276.923</span> || || (9+13)/57 || || || 189.474+273.684 || || (7+10)/44 || || || 190.909+272.727 || || || (19+27)/119 || || 191.597+272.269 || || || (12+17)/75 || || 192+272 || || || (17+24)/106 || || 192.472+271.698 || || (5+7)/31 || || || 193.548+270.968 || || || (18+25)/111 || || 194.595+270.27 || || || (13+18)/80 || || 195+270 || || || || || 195.252+269.832 || || || || (21+29)/129 || 195.349+269.907 || || || (8+11)/49 || || 195.918+269.388 || || || || (19+26)/116 || 196.552+268.966 || || || (11+15)/67 || || 197.015+268.657 || || || (14+19)/85 || || 197.647+268.235 || || || (17+23)/103 || || 198.058+267.961 || || || (20+27)/121 || || 198.347+267.769 || || || (23+31)/139 || || 198.561+267.626 || || || (26+35)/157 || || 198.726+267.516 || || || (29+39)/175 || || 198.857+267.429 || || || (32+43)/193 || || 198.964+267.358 || || || (35+47)/211 || || 199.052+267.299 || || (3+4)/18 || || || 200+266.667 || || || (19+25)/113 || || 201.77+265.442 || || || (16+21)/95 || || 202.105+265.2105 || || || (13+17)/77 || || 202.597+264.935 || || || (10+13)/59 || || 203.39+264.407 || || || (7+9)/41 || || 204.878+263.415 || || || || (18+23)/105 || 205.714+262.857 || || || || || 205.861+262.759 || || || (11+14)/64 || || 206.25+262.5 || || || || || 206.653+262.231 || || || (15+19)/87 || || 206.897+262.069 || || || (19+24)/110 || || 207.273+261.818 || || (4+5)/23 || || || 208.696+260.870 || || || || || 209.6305+260.246 || || || (13+16)/74 || || 210.811+259.459 || || || (9+11)/51 || || 211.765+257.824 || || || (14+17)/79 || || 212.658+258.346 || || (5+6)/28 || || || 214.286+257.143 || || || (16+19)/89 || || 215.73+256.18 || || || <span style="font-size: 12.8000001907349px;">(11+13)/61</span> || || 216.393+255.738 || || || (17+20)/94 || || 217.021+255.319 || || (6+7)/33 || || || 218.182+254.5455 || || (1+1)/5 || || || 240+240 ||
Original HTML content:
<html><head><title>5L 8s</title></head><body>This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a "third". However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the "minor third/major sixth") are typically the most consonant harmonies of the scale.<br /> <table class="wiki_table"> <tr> <td>(2+3)/13<br /> </td> <td><br /> </td> <td><br /> </td> <td>184.615+<span style="font-size: 12.8000001907349px;">276.923</span><br /> </td> </tr> <tr> <td>(9+13)/57<br /> </td> <td><br /> </td> <td><br /> </td> <td>189.474+273.684<br /> </td> </tr> <tr> <td>(7+10)/44<br /> </td> <td><br /> </td> <td><br /> </td> <td>190.909+272.727<br /> </td> </tr> <tr> <td><br /> </td> <td>(19+27)/119<br /> </td> <td><br /> </td> <td>191.597+272.269<br /> </td> </tr> <tr> <td><br /> </td> <td>(12+17)/75<br /> </td> <td><br /> </td> <td>192+272<br /> </td> </tr> <tr> <td><br /> </td> <td>(17+24)/106<br /> </td> <td><br /> </td> <td>192.472+271.698<br /> </td> </tr> <tr> <td>(5+7)/31<br /> </td> <td><br /> </td> <td><br /> </td> <td>193.548+270.968<br /> </td> </tr> <tr> <td><br /> </td> <td>(18+25)/111<br /> </td> <td><br /> </td> <td>194.595+270.27<br /> </td> </tr> <tr> <td><br /> </td> <td>(13+18)/80<br /> </td> <td><br /> </td> <td>195+270<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>195.252+269.832<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>(21+29)/129<br /> </td> <td>195.349+269.907<br /> </td> </tr> <tr> <td><br /> </td> <td>(8+11)/49<br /> </td> <td><br /> </td> <td>195.918+269.388<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>(19+26)/116<br /> </td> <td>196.552+268.966<br /> </td> </tr> <tr> <td><br /> </td> <td>(11+15)/67<br /> </td> <td><br /> </td> <td>197.015+268.657<br /> </td> </tr> <tr> <td><br /> </td> <td>(14+19)/85<br /> </td> <td><br /> </td> <td>197.647+268.235<br /> </td> </tr> <tr> <td><br /> </td> <td>(17+23)/103<br /> </td> <td><br /> </td> <td>198.058+267.961<br /> </td> </tr> <tr> <td><br /> </td> <td>(20+27)/121<br /> </td> <td><br /> </td> <td>198.347+267.769<br /> </td> </tr> <tr> <td><br /> </td> <td>(23+31)/139<br /> </td> <td><br /> </td> <td>198.561+267.626<br /> </td> </tr> <tr> <td><br /> </td> <td>(26+35)/157<br /> </td> <td><br /> </td> <td>198.726+267.516<br /> </td> </tr> <tr> <td><br /> </td> <td>(29+39)/175<br /> </td> <td><br /> </td> <td>198.857+267.429<br /> </td> </tr> <tr> <td><br /> </td> <td>(32+43)/193<br /> </td> <td><br /> </td> <td>198.964+267.358<br /> </td> </tr> <tr> <td><br /> </td> <td>(35+47)/211<br /> </td> <td><br /> </td> <td>199.052+267.299<br /> </td> </tr> <tr> <td>(3+4)/18<br /> </td> <td><br /> </td> <td><br /> </td> <td>200+266.667<br /> </td> </tr> <tr> <td><br /> </td> <td>(19+25)/113<br /> </td> <td><br /> </td> <td>201.77+265.442<br /> </td> </tr> <tr> <td><br /> </td> <td>(16+21)/95<br /> </td> <td><br /> </td> <td>202.105+265.2105<br /> </td> </tr> <tr> <td><br /> </td> <td>(13+17)/77<br /> </td> <td><br /> </td> <td>202.597+264.935<br /> </td> </tr> <tr> <td><br /> </td> <td>(10+13)/59<br /> </td> <td><br /> </td> <td>203.39+264.407<br /> </td> </tr> <tr> <td><br /> </td> <td>(7+9)/41<br /> </td> <td><br /> </td> <td>204.878+263.415<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>(18+23)/105<br /> </td> <td>205.714+262.857<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>205.861+262.759<br /> </td> </tr> <tr> <td><br /> </td> <td>(11+14)/64<br /> </td> <td><br /> </td> <td>206.25+262.5<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>206.653+262.231<br /> </td> </tr> <tr> <td><br /> </td> <td>(15+19)/87<br /> </td> <td><br /> </td> <td>206.897+262.069<br /> </td> </tr> <tr> <td><br /> </td> <td>(19+24)/110<br /> </td> <td><br /> </td> <td>207.273+261.818<br /> </td> </tr> <tr> <td>(4+5)/23<br /> </td> <td><br /> </td> <td><br /> </td> <td>208.696+260.870<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>209.6305+260.246<br /> </td> </tr> <tr> <td><br /> </td> <td>(13+16)/74<br /> </td> <td><br /> </td> <td>210.811+259.459<br /> </td> </tr> <tr> <td><br /> </td> <td>(9+11)/51<br /> </td> <td><br /> </td> <td>211.765+257.824<br /> </td> </tr> <tr> <td><br /> </td> <td>(14+17)/79<br /> </td> <td><br /> </td> <td>212.658+258.346<br /> </td> </tr> <tr> <td>(5+6)/28<br /> </td> <td><br /> </td> <td><br /> </td> <td>214.286+257.143<br /> </td> </tr> <tr> <td><br /> </td> <td>(16+19)/89<br /> </td> <td><br /> </td> <td>215.73+256.18<br /> </td> </tr> <tr> <td><br /> </td> <td><span style="font-size: 12.8000001907349px;">(11+13)/61</span><br /> </td> <td><br /> </td> <td>216.393+255.738<br /> </td> </tr> <tr> <td><br /> </td> <td>(17+20)/94<br /> </td> <td><br /> </td> <td>217.021+255.319<br /> </td> </tr> <tr> <td>(6+7)/33<br /> </td> <td><br /> </td> <td><br /> </td> <td>218.182+254.5455<br /> </td> </tr> <tr> <td>(1+1)/5<br /> </td> <td><br /> </td> <td><br /> </td> <td>240+240<br /> </td> </tr> </table> </body></html>