Edϕ
The octave-reduced 13th harmonic, 13/8 (≈840.5276618¢), is closely approximated by 7 steps of 10ed2 (840¢).
13/8 (1.625) is also close to acoustic phi (≈1.618033989), because 8 and 13 are sequential Fibonacci numbers.
So, if we divide acoustic phi into 7 steps, then 10 of those steps will bring us quite close to an octave.
This tuning therefore could also be thought of as 10edo with a stretched octave. Since the ratio between acoustic phi and the 10ed2 approximation of the 13th harmonic is ≈0.9917741623, the resulting stretched octave is 2^0.9917741623 = 1.988629015, or ≈1190.128995¢.
10ed2 | 7edφ or 10ed([math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} }[/math]) | |||||||
scale step | frequency multiplier (definition) | 10ed2 frequency multiplier (decimal) | pitch (¢) | Δ (¢) | frequency multiplier (definition) | frequency multiplier (decimal) | pitch (¢) | Δ (¢) |
1 | [math]\displaystyle{ 2^{\frac{1}{10}} }[/math] | 1.071773463 | 120 | 120 | [math]\displaystyle{ φ^{\frac{1}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{1log_2{φ}}{7}} }[/math] | 1.071162542 | 119.0128995 | 119.0128995 |
2 | [math]\displaystyle{ 2^{\frac{2}{10}} }[/math] | 1.148698355 | 240 | 120 | [math]\displaystyle{ φ^{\frac{2}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{2log_2{φ}}{7}} }[/math] | 1.147389191 | 238.025799 | 119.0128995 |
3 | [math]\displaystyle{ 2^{\frac{3}{10}} }[/math] | 1.231144413 | 360 | 120 | [math]\displaystyle{ φ^{\frac{3}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{3log_2{φ}}{7}} }[/math] | 1.229040323 | 357.0386984 | 119.0128995 |
4 | [math]\displaystyle{ 2^{\frac{4}{10}} }[/math] | 1.319507911 | 480 | 120 | [math]\displaystyle{ φ^{\frac{4}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{4log_2{φ}}{7}} }[/math] | 1.316501956 | 476.0515979 | 119.0128995 |
5 | [math]\displaystyle{ 2^{\frac{5}{10}} }[/math] | 1.414213562 | 600 | 120 | [math]\displaystyle{ φ^{\frac{5}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{5log_2{φ}}{7}} }[/math] | 1.410187582 | 595.0644974 | 119.0128995 |
6 | [math]\displaystyle{ 2^{\frac{6}{10}} }[/math] | 1.515716567 | 720 | 120 | [math]\displaystyle{ φ^{\frac{6}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{6log_2{φ}}{7}} }[/math] | 1.510540115 | 714.0773969 | 119.0128995 |
7 | [math]\displaystyle{ 2^{\frac{7}{10}} }[/math] | 1.624504793 | 840 | 120 | [math]\displaystyle{ φ^{\frac{7}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{7log_2{φ}}{7}} }[/math] | 1.618033989 | 833.0902964 | 119.0128995 |
8 | [math]\displaystyle{ 2^{\frac{8}{10}} }[/math] | 1.741101127 | 960 | 120 | [math]\displaystyle{ φ^{\frac{8}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{8log_2{φ}}{7}} }[/math] | 1.7331774 | 952.1031958 | 119.0128995 |
9 | [math]\displaystyle{ 2^{\frac{9}{10}} }[/math] | 1.866065983 | 1080 | 120 | [math]\displaystyle{ φ^{\frac{9}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{9log_2{φ}}{7}} }[/math] | 1.85651471 | 1071.116095 | 119.0128995 |
10 | [math]\displaystyle{ 2^{\frac{10}{10}} }[/math] | 2 | 1200 | 120 | [math]\displaystyle{ φ^{\frac{10}{7}} }[/math] or [math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} }[/math] | 1.988629015 | 1190.128995 | 119.0128995 |