Moving the bridge hack

Revision as of 12:56, 14 October 2012 by Wikispaces>keenanpepper (**Imported revision 372872100 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author keenanpepper and made on 2012-10-14 12:56:17 UTC.
The original revision id was 372872100.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

If you have a [[12edo]] guitar, or other fretted [[string instruments|string instrument]], and you want to play in an EDO that is numerically near 12 (e.g. [[11edo]] or [[13edo]]), then rather than redoing the whole fretboard, you might be tempted simply to move the bridge. If you move the bridge so that the 13th fret is now precisely 2/1, the frets will play precisely 13edo, right?

...well, actually, no. The frets form a geometric series of lengths that converges at a specific point, which is where the bridge ought to be. (That's what an EDO is - a geometric sequence of frequencies, corresponding to a geometric sequence of string lengths.) If you move the bridge, the new string lengths no longer form a mathematically correct geometric sequence. However, depending on what range of the fretboard you want to be usable, and what accuracy you desire, a moving-the-bridge solution may be possible.

=Derivation of the resulting scale= 

Let the EDO number of the original instrument be N (so very often N=12). Let the original scale length of the instrument (distance from bridge to nut) be 1. In other words we're measuring all lengths relative to the original scale length. Then the playable string lengths of the unmodified instrument are

[[math]]
2^{-i/N} \text{ for } i = 1, 2, 3\dots
[[math]]

If the bridge is moved so that the new scale length is x, this adds (x-1) to all string lengths, so the new string lengths are simply

[[math]]
2^{-i/N} + x - 1 \text{ for } i = 1, 2, 3\dots
[[math]]

The frequencies are inversely proportional to the string lengths. If we plug in i=0 to the above formula, we get x, so the frequency ratios relative to the open string are

[[math]]
\frac{x}{2^{-i/N} + x - 1} \text{ for } i = 1, 2, 3\dots
[[math]]

Converting those frequency ratios into cents in the usual way (taking the log to base 2 and multiplying by 1200) gives the new scale in cents.

=Examples for converting a 12edo instrument= 

==9edo== 

The naive way to position the bridge for 9edo would be to make the 9th fret play an exact 2/1. However, this causes a rather large amount of error in some lower frets (as well as, of course, the higher ones above fret 9):

||~ Fret number ||~ Cents ||~ Deviation from 9edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 124.191 ||> -9.142 ||
|| 2 ||> 250.196 ||> -16.471 ||
|| 3 ||> 378.179 ||> -21.821 ||
|| 4 ||> 508.328 ||> -25.005 ||
|| 5 ||> 640.854 ||> -25.813 ||
|| 6 ||> 775.993 ||> -24.007 ||
|| 7 ||> 914.017 ||> -19.317 ||
|| 8 ||> 1055.234 ||> -11.433 ||
|| 9 ||> 1200.000 ||> 0.000 ||
|| 10 ||> 1348.726 ||> 15.392 ||
|| 11 ||> 1501.890 ||> 35.223 ||
|| 12 ||> 1660.056 ||> 60.056 ||
|| 13 ||> 1823.890 ||> 90.557 ||

Can the error be reduced? Yes, at the expense of having a smaller usable range of fretboard. For example, let's say we want to limit the maximum error to 10 cents. How many frets can we use at this level of accuracy?

||~ Fret number ||~ Cents ||~ Deviation from 9edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 127.785 ||> -5.548 ||
|| 2 ||> 257.717 ||> -8.950 ||
|| 3 ||> 390.004 ||> -9.996 ||
|| 4 ||> 524.880 ||> -8.453 ||
|| 5 ||> 662.614 ||> -4.053 ||
|| 6 ||> 803.509 ||> 3.509 ||
|| 7 ||> 947.916 ||> 14.583 ||
|| 8 ||> 1096.241 ||> 29.574 ||
|| 9 ||> 1248.955 ||> 48.955 ||

The answer is six frets. (It's impossible to make the seventh fret more accurate without the error of the third fret exceeding 10 cents.) Perhaps surprisingly, this level of accuracy for the first six frets is only achievable by making the 9th fret at least 1249 cents, rather than 2/1.

==10edo== 

Pure 2/1:

||~ Fret number ||~ Cents ||~ Deviation from 10edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 114.426 ||> -5.574 ||
|| 2 ||> 229.842 ||> -10.158 ||
|| 3 ||> 346.326 ||> -13.674 ||
|| 4 ||> 463.963 ||> -16.037 ||
|| 5 ||> 582.847 ||> -17.153 ||
|| 6 ||> 703.082 ||> -16.918 ||
|| 7 ||> 824.780 ||> -15.220 ||
|| 8 ||> 948.070 ||> -11.930 ||
|| 9 ||> 1073.091 ||> -6.909 ||
|| 10 ||> 1200.000 ||> 0.000 ||
|| 11 ||> 1328.973 ||> 8.973 ||
|| 12 ||> 1460.208 ||> 20.208 ||
|| 13 ||> 1593.926 ||> 33.926 ||
|| 14 ||> 1730.381 ||> 50.381 ||
|| 15 ||> 1869.859 ||> 69.859 ||

Max error limited to 10 cents:

||~ Fret number ||~ Cents ||~ Deviation from 10edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 115.766 ||> -4.234 ||
|| 2 ||> 232.628 ||> -7.372 ||
|| 3 ||> 350.674 ||> -9.326 ||
|| 4 ||> 470.000 ||> -10.000 ||
|| 5 ||> 590.714 ||> -9.286 ||
|| 6 ||> 712.933 ||> -7.067 ||
|| 7 ||> 836.788 ||> -3.212 ||
|| 8 ||> 962.426 ||> 2.426 ||
|| 9 ||> 1090.010 ||> 10.010 ||
|| 10 ||> 1219.720 ||> 19.720 ||
|| 11 ||> 1351.764 ||> 31.764 ||
|| 12 ||> 1486.373 ||> 46.373 ||
|| 13 ||> 1623.811 ||> 63.811 ||

==11edo== 

Pure 2/1:

||~ Fret number ||~ Cents ||~ Deviation from 11edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 106.521 ||> -2.570 ||
|| 2 ||> 213.456 ||> -4.726 ||
|| 3 ||> 320.834 ||> -6.439 ||
|| 4 ||> 428.685 ||> -7.678 ||
|| 5 ||> 537.043 ||> -8.412 ||
|| 6 ||> 645.941 ||> -8.604 ||
|| 7 ||> 755.419 ||> -8.218 ||
|| 8 ||> 865.517 ||> -7.210 ||
|| 9 ||> 976.280 ||> -5.538 ||
|| 10 ||> 1087.757 ||> -3.152 ||
|| 11 ||> 1200.000 ||> 0.000 ||
|| 12 ||> 1313.066 ||> 3.975 ||
|| 13 ||> 1427.017 ||> 8.836 ||
|| 14 ||> 1541.922 ||> 14.649 ||
|| 15 ||> 1657.854 ||> 21.491 ||
|| 16 ||> 1774.895 ||> 29.441 ||
|| 17 ||> 1893.135 ||> 38.589 ||
|| 18 ||> 2012.670 ||> 49.034 ||
|| 19 ||> 2133.611 ||> 60.884 ||

==13edo== 

Pure 2/1:

||~ Fret number ||~ Cents ||~ Deviation from 13edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 94.538 ||> 2.230 ||
|| 2 ||> 188.770 ||> 4.154 ||
|| 3 ||> 282.679 ||> 5.756 ||
|| 4 ||> 376.250 ||> 7.019 ||
|| 5 ||> 469.465 ||> 7.926 ||
|| 6 ||> 562.305 ||> 8.458 ||
|| 7 ||> 654.751 ||> 8.597 ||
|| 8 ||> 746.784 ||> 8.322 ||
|| 9 ||> 838.383 ||> 7.613 ||
|| 10 ||> 929.526 ||> 6.449 ||
|| 11 ||> 1020.193 ||> 4.808 ||
|| 12 ||> 1110.358 ||> 2.666 ||
|| 13 ||> 1200.000 ||> 0.000 ||
|| 14 ||> 1289.093 ||> -3.215 ||
|| 15 ||> 1377.612 ||> -7.004 ||
|| 16 ||> 1465.530 ||> -11.393 ||
|| 17 ||> 1552.822 ||> -16.409 ||
|| 18 ||> 1639.458 ||> -22.080 ||
|| 19 ||> 1725.412 ||> -28.434 ||
|| 20 ||> 1810.654 ||> -35.500 ||
|| 21 ||> 1895.155 ||> -43.307 ||
|| 22 ||> 1978.883 ||> -51.886 ||
|| 23 ||> 2061.810 ||> -61.267 ||

==14edo== 

Pure 2/1:

||~ Fret number ||~ Cents ||~ Deviation from 14edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 89.903 ||> 4.189 ||
|| 2 ||> 179.269 ||> 7.841 ||
|| 3 ||> 268.074 ||> 10.931 ||
|| 4 ||> 356.292 ||> 13.435 ||
|| 5 ||> 443.896 ||> 15.324 ||
|| 6 ||> 530.859 ||> 16.573 ||
|| 7 ||> 617.153 ||> 17.153 ||
|| 8 ||> 702.749 ||> 17.035 ||
|| 9 ||> 787.619 ||> 16.190 ||
|| 10 ||> 871.731 ||> 14.588 ||
|| 11 ||> 955.057 ||> 12.200 ||
|| 12 ||> 1037.564 ||> 8.993 ||
|| 13 ||> 1119.223 ||> 4.937 ||
|| 14 ||> 1200.000 ||> 0.000 ||
|| 15 ||> 1279.864 ||> -5.850 ||
|| 16 ||> 1358.784 ||> -12.645 ||
|| 17 ||> 1436.727 ||> -20.416 ||
|| 18 ||> 1513.660 ||> -29.197 ||
|| 19 ||> 1589.553 ||> -39.019 ||
|| 20 ||> 1664.373 ||> -49.913 ||
|| 21 ||> 1738.090 ||> -61.910 ||

Max error limited to 10 cents:

||~ Fret number ||~ Cents ||~ Deviation from 14edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 88.925 ||> 3.210 ||
|| 2 ||> 177.267 ||> 5.839 ||
|| 3 ||> 265.002 ||> 7.859 ||
|| 4 ||> 352.101 ||> 9.244 ||
|| 5 ||> 438.538 ||> 9.966 ||
|| 6 ||> 524.283 ||> 9.997 ||
|| 7 ||> 609.307 ||> 9.307 ||
|| 8 ||> 693.580 ||> 7.866 ||
|| 9 ||> 777.073 ||> 5.645 ||
|| 10 ||> 859.755 ||> 2.612 ||
|| 11 ||> 941.593 ||> -1.264 ||
|| 12 ||> 1022.558 ||> -6.014 ||
|| 13 ||> 1102.616 ||> -11.670 ||
|| 14 ||> 1181.736 ||> -18.264 ||
|| 15 ||> 1259.886 ||> -25.829 ||
|| 16 ||> 1337.033 ||> -34.395 ||
|| 17 ||> 1413.146 ||> -43.996 ||
|| 18 ||> 1488.194 ||> -54.663 ||
|| 19 ||> 1562.144 ||> -66.427 ||

==15edo== 

Pure 2/1:

||~ Fret number ||~ Cents ||~ Deviation from 15edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 85.927 ||> 5.927 ||
|| 2 ||> 171.140 ||> 11.140 ||
|| 3 ||> 255.611 ||> 15.611 ||
|| 4 ||> 339.310 ||> 19.310 ||
|| 5 ||> 422.204 ||> 22.204 ||
|| 6 ||> 504.264 ||> 24.264 ||
|| 7 ||> 585.458 ||> 25.458 ||
|| 8 ||> 665.754 ||> 25.754 ||
|| 9 ||> 745.120 ||> 25.120 ||
|| 10 ||> 823.524 ||> 23.524 ||
|| 11 ||> 900.935 ||> 20.935 ||
|| 12 ||> 977.319 ||> 17.319 ||
|| 13 ||> 1052.645 ||> 12.645 ||
|| 14 ||> 1126.883 ||> 6.883 ||
|| 15 ||> 1200.000 ||> 0.000 ||
|| 16 ||> 1271.967 ||> -8.033 ||
|| 17 ||> 1342.754 ||> -17.246 ||
|| 18 ||> 1412.333 ||> -27.667 ||
|| 19 ||> 1480.675 ||> -39.325 ||
|| 20 ||> 1547.754 ||> -52.246 ||
|| 21 ||> 1613.546 ||> -66.454 ||

Max error limited to 10 cents:

||~ Fret number ||~ Cents ||~ Deviation from 15edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 83.670 ||> 3.670 ||
|| 2 ||> 166.535 ||> 6.535 ||
|| 3 ||> 248.564 ||> 8.564 ||
|| 4 ||> 329.727 ||> 9.727 ||
|| 5 ||> 409.990 ||> 9.990 ||
|| 6 ||> 489.322 ||> 9.322 ||
|| 7 ||> 567.691 ||> 7.691 ||
|| 8 ||> 645.065 ||> 5.065 ||
|| 9 ||> 721.412 ||> 1.412 ||
|| 10 ||> 796.700 ||> -3.300 ||
|| 11 ||> 870.897 ||> -9.103 ||
|| 12 ||> 943.974 ||> -16.026 ||
|| 13 ||> 1015.899 ||> -24.101 ||
|| 14 ||> 1086.643 ||> -33.357 ||
|| 15 ||> 1156.178 ||> -43.822 ||
|| 16 ||> 1224.475 ||> -55.525 ||
|| 17 ||> 1291.509 ||> -68.491 ||

==16edo== 

Pure 2/1:

||~ Fret number ||~ Cents ||~ Deviation from 16edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 82.483 ||> 7.483 ||
|| 2 ||> 164.117 ||> 14.117 ||
|| 3 ||> 244.868 ||> 19.868 ||
|| 4 ||> 324.706 ||> 24.706 ||
|| 5 ||> 403.598 ||> 28.598 ||
|| 6 ||> 481.511 ||> 31.511 ||
|| 7 ||> 558.415 ||> 33.415 ||
|| 8 ||> 634.278 ||> 34.278 ||
|| 9 ||> 709.066 ||> 34.066 ||
|| 10 ||> 782.751 ||> 32.751 ||
|| 11 ||> 855.300 ||> 30.300 ||
|| 12 ||> 926.683 ||> 26.683 ||
|| 13 ||> 996.873 ||> 21.873 ||
|| 14 ||> 1065.840 ||> 15.840 ||
|| 15 ||> 1133.558 ||> 8.558 ||
|| 16 ||> 1200.000 ||> 0.000 ||
|| 17 ||> 1265.142 ||> -9.858 ||
|| 18 ||> 1328.962 ||> -21.038 ||
|| 19 ||> 1391.438 ||> -33.562 ||
|| 20 ||> 1452.550 ||> -47.450 ||
|| 21 ||> 1512.281 ||> -62.719 ||

Max error limited to 10 cents:

||~ Fret number ||~ Cents ||~ Deviation from 16edo ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 78.993 ||> 3.993 ||
|| 2 ||> 157.011 ||> 7.011 ||
|| 3 ||> 234.022 ||> 9.022 ||
|| 4 ||> 309.995 ||> 9.995 ||
|| 5 ||> 384.898 ||> 9.898 ||
|| 6 ||> 458.700 ||> 8.700 ||
|| 7 ||> 531.369 ||> 6.369 ||
|| 8 ||> 602.877 ||> 2.877 ||
|| 9 ||> 673.193 ||> -1.807 ||
|| 10 ||> 742.290 ||> -7.710 ||
|| 11 ||> 810.140 ||> -14.860 ||
|| 12 ||> 876.717 ||> -23.283 ||
|| 13 ||> 941.997 ||> -33.003 ||
|| 14 ||> 1005.957 ||> -44.043 ||
|| 15 ||> 1068.574 ||> -56.426 ||
|| 16 ||> 1129.830 ||> -70.170 ||

==Bohlen-Pierce== 

As an example of a non-octave temperament, let's try to approximate the equal-tempered [[Bohlen-Pierce]] scale (13ed3) by moving the bridge of a 12edo guitar.

The naive method of making the 13th fret an exact 3/1 would be terrible:

||~ Fret number ||~ Cents ||~ Deviation from 13ed3 ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 127.235 ||> -19.072 ||
|| 2 ||> 256.565 ||> -36.050 ||
|| 3 ||> 388.191 ||> -50.732 ||
|| 4 ||> 522.340 ||> -62.891 ||
|| 5 ||> 659.270 ||> -72.269 ||
|| 6 ||> 799.275 ||> -78.572 ||
|| 7 ||> 942.691 ||> -81.462 ||
|| 8 ||> 1089.910 ||> -80.552 ||
|| 9 ||> 1241.382 ||> -75.387 ||
|| 10 ||> 1397.638 ||> -65.439 ||
|| 11 ||> 1559.303 ||> -50.081 ||
|| 12 ||> 1727.124 ||> -28.568 ||
|| 13 ||> 1902.000 ||> 0.000 ||
|| 14 ||> 2085.028 ||> 36.720 ||
|| 15 ||> 2277.566 ||> 82.951 ||
|| 16 ||> 2481.323 ||> 140.400 ||

Even though the error of the 13th fret is 0, the error of frets 7 and 8 is about 80 cents, which is unacceptable.

A much more satisfactory solution is to minimize the maximum error over the first 6 frets:

||~ Fret number ||~ Cents ||~ Deviation from 13ed3 ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 138.788 ||> -7.520 ||
|| 2 ||> 280.853 ||> -11.763 ||
|| 3 ||> 426.563 ||> -12.360 ||
|| 4 ||> 576.345 ||> -8.886 ||
|| 5 ||> 730.697 ||> -0.841 ||
|| 6 ||> 890.206 ||> 12.360 ||
|| 7 ||> 1055.569 ||> 31.415 ||
|| 8 ||> 1227.620 ||> 57.158 ||
|| 9 ||> 1407.376 ||> 90.606 ||

Or even just the first 5, for better accuracy:

||~ Fret number ||~ Cents ||~ Deviation from 13e3 ||
|| 0 (nut) ||> 0.000 ||> 0.000 ||
|| 1 ||> 140.285 ||> -6.023 ||
|| 2 ||> 284.014 ||> -8.601 ||
|| 3 ||> 431.581 ||> -7.343 ||
|| 4 ||> 583.443 ||> -1.787 ||
|| 5 ||> 740.140 ||> 8.601 ||
|| 6 ||> 902.305 ||> 24.459 ||
|| 7 ||> 1070.696 ||> 46.543 ||
|| 8 ||> 1246.229 ||> 75.768 ||

If the open strings are tuned in 9/7s or 7/5s, this makes a perfectly playable BP guitar with fret error under 9 cents. The only restriction is that you should never play frets 6 or above, because they're increasingly out of tune.

Original HTML content:

<html><head><title>Moving the bridge hack</title></head><body>If you have a <a class="wiki_link" href="/12edo">12edo</a> guitar, or other fretted <a class="wiki_link" href="/string%20instruments">string instrument</a>, and you want to play in an EDO that is numerically near 12 (e.g. <a class="wiki_link" href="/11edo">11edo</a> or <a class="wiki_link" href="/13edo">13edo</a>), then rather than redoing the whole fretboard, you might be tempted simply to move the bridge. If you move the bridge so that the 13th fret is now precisely 2/1, the frets will play precisely 13edo, right?<br />
<br />
...well, actually, no. The frets form a geometric series of lengths that converges at a specific point, which is where the bridge ought to be. (That's what an EDO is - a geometric sequence of frequencies, corresponding to a geometric sequence of string lengths.) If you move the bridge, the new string lengths no longer form a mathematically correct geometric sequence. However, depending on what range of the fretboard you want to be usable, and what accuracy you desire, a moving-the-bridge solution may be possible.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:3:&lt;h1&gt; --><h1 id="toc0"><a name="Derivation of the resulting scale"></a><!-- ws:end:WikiTextHeadingRule:3 -->Derivation of the resulting scale</h1>
 <br />
Let the EDO number of the original instrument be N (so very often N=12). Let the original scale length of the instrument (distance from bridge to nut) be 1. In other words we're measuring all lengths relative to the original scale length. Then the playable string lengths of the unmodified instrument are<br />
<br />
<!-- ws:start:WikiTextMathRule:0:
[[math]]&lt;br/&gt;
2^{-i/N} \text{ for } i = 1, 2, 3\dots&lt;br/&gt;[[math]]
 --><script type="math/tex">2^{-i/N} \text{ for } i = 1, 2, 3\dots</script><!-- ws:end:WikiTextMathRule:0 --><br />
<br />
If the bridge is moved so that the new scale length is x, this adds (x-1) to all string lengths, so the new string lengths are simply<br />
<br />
<!-- ws:start:WikiTextMathRule:1:
[[math]]&lt;br/&gt;
2^{-i/N} + x - 1 \text{ for } i = 1, 2, 3\dots&lt;br/&gt;[[math]]
 --><script type="math/tex">2^{-i/N} + x - 1 \text{ for } i = 1, 2, 3\dots</script><!-- ws:end:WikiTextMathRule:1 --><br />
<br />
The frequencies are inversely proportional to the string lengths. If we plug in i=0 to the above formula, we get x, so the frequency ratios relative to the open string are<br />
<br />
<!-- ws:start:WikiTextMathRule:2:
[[math]]&lt;br/&gt;
\frac{x}{2^{-i/N} + x - 1} \text{ for } i = 1, 2, 3\dots&lt;br/&gt;[[math]]
 --><script type="math/tex">\frac{x}{2^{-i/N} + x - 1} \text{ for } i = 1, 2, 3\dots</script><!-- ws:end:WikiTextMathRule:2 --><br />
<br />
Converting those frequency ratios into cents in the usual way (taking the log to base 2 and multiplying by 1200) gives the new scale in cents.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:5:&lt;h1&gt; --><h1 id="toc1"><a name="Examples for converting a 12edo instrument"></a><!-- ws:end:WikiTextHeadingRule:5 -->Examples for converting a 12edo instrument</h1>
 <br />
<!-- ws:start:WikiTextHeadingRule:7:&lt;h2&gt; --><h2 id="toc2"><a name="Examples for converting a 12edo instrument-9edo"></a><!-- ws:end:WikiTextHeadingRule:7 -->9edo</h2>
 <br />
The naive way to position the bridge for 9edo would be to make the 9th fret play an exact 2/1. However, this causes a rather large amount of error in some lower frets (as well as, of course, the higher ones above fret 9):<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 9edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">124.191<br />
</td>
        <td style="text-align: right;">-9.142<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">250.196<br />
</td>
        <td style="text-align: right;">-16.471<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">378.179<br />
</td>
        <td style="text-align: right;">-21.821<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">508.328<br />
</td>
        <td style="text-align: right;">-25.005<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">640.854<br />
</td>
        <td style="text-align: right;">-25.813<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">775.993<br />
</td>
        <td style="text-align: right;">-24.007<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">914.017<br />
</td>
        <td style="text-align: right;">-19.317<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">1055.234<br />
</td>
        <td style="text-align: right;">-11.433<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">1200.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">1348.726<br />
</td>
        <td style="text-align: right;">15.392<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">1501.890<br />
</td>
        <td style="text-align: right;">35.223<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1660.056<br />
</td>
        <td style="text-align: right;">60.056<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1823.890<br />
</td>
        <td style="text-align: right;">90.557<br />
</td>
    </tr>
</table>

<br />
Can the error be reduced? Yes, at the expense of having a smaller usable range of fretboard. For example, let's say we want to limit the maximum error to 10 cents. How many frets can we use at this level of accuracy?<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 9edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">127.785<br />
</td>
        <td style="text-align: right;">-5.548<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">257.717<br />
</td>
        <td style="text-align: right;">-8.950<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">390.004<br />
</td>
        <td style="text-align: right;">-9.996<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">524.880<br />
</td>
        <td style="text-align: right;">-8.453<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">662.614<br />
</td>
        <td style="text-align: right;">-4.053<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">803.509<br />
</td>
        <td style="text-align: right;">3.509<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">947.916<br />
</td>
        <td style="text-align: right;">14.583<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">1096.241<br />
</td>
        <td style="text-align: right;">29.574<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">1248.955<br />
</td>
        <td style="text-align: right;">48.955<br />
</td>
    </tr>
</table>

<br />
The answer is six frets. (It's impossible to make the seventh fret more accurate without the error of the third fret exceeding 10 cents.) Perhaps surprisingly, this level of accuracy for the first six frets is only achievable by making the 9th fret at least 1249 cents, rather than 2/1.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:9:&lt;h2&gt; --><h2 id="toc3"><a name="Examples for converting a 12edo instrument-10edo"></a><!-- ws:end:WikiTextHeadingRule:9 -->10edo</h2>
 <br />
Pure 2/1:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 10edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">114.426<br />
</td>
        <td style="text-align: right;">-5.574<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">229.842<br />
</td>
        <td style="text-align: right;">-10.158<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">346.326<br />
</td>
        <td style="text-align: right;">-13.674<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">463.963<br />
</td>
        <td style="text-align: right;">-16.037<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">582.847<br />
</td>
        <td style="text-align: right;">-17.153<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">703.082<br />
</td>
        <td style="text-align: right;">-16.918<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">824.780<br />
</td>
        <td style="text-align: right;">-15.220<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">948.070<br />
</td>
        <td style="text-align: right;">-11.930<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">1073.091<br />
</td>
        <td style="text-align: right;">-6.909<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">1200.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">1328.973<br />
</td>
        <td style="text-align: right;">8.973<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1460.208<br />
</td>
        <td style="text-align: right;">20.208<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1593.926<br />
</td>
        <td style="text-align: right;">33.926<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1730.381<br />
</td>
        <td style="text-align: right;">50.381<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1869.859<br />
</td>
        <td style="text-align: right;">69.859<br />
</td>
    </tr>
</table>

<br />
Max error limited to 10 cents:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 10edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">115.766<br />
</td>
        <td style="text-align: right;">-4.234<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">232.628<br />
</td>
        <td style="text-align: right;">-7.372<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">350.674<br />
</td>
        <td style="text-align: right;">-9.326<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">470.000<br />
</td>
        <td style="text-align: right;">-10.000<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">590.714<br />
</td>
        <td style="text-align: right;">-9.286<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">712.933<br />
</td>
        <td style="text-align: right;">-7.067<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">836.788<br />
</td>
        <td style="text-align: right;">-3.212<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">962.426<br />
</td>
        <td style="text-align: right;">2.426<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">1090.010<br />
</td>
        <td style="text-align: right;">10.010<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">1219.720<br />
</td>
        <td style="text-align: right;">19.720<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">1351.764<br />
</td>
        <td style="text-align: right;">31.764<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1486.373<br />
</td>
        <td style="text-align: right;">46.373<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1623.811<br />
</td>
        <td style="text-align: right;">63.811<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:11:&lt;h2&gt; --><h2 id="toc4"><a name="Examples for converting a 12edo instrument-11edo"></a><!-- ws:end:WikiTextHeadingRule:11 -->11edo</h2>
 <br />
Pure 2/1:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 11edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">106.521<br />
</td>
        <td style="text-align: right;">-2.570<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">213.456<br />
</td>
        <td style="text-align: right;">-4.726<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">320.834<br />
</td>
        <td style="text-align: right;">-6.439<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">428.685<br />
</td>
        <td style="text-align: right;">-7.678<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">537.043<br />
</td>
        <td style="text-align: right;">-8.412<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">645.941<br />
</td>
        <td style="text-align: right;">-8.604<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">755.419<br />
</td>
        <td style="text-align: right;">-8.218<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">865.517<br />
</td>
        <td style="text-align: right;">-7.210<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">976.280<br />
</td>
        <td style="text-align: right;">-5.538<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">1087.757<br />
</td>
        <td style="text-align: right;">-3.152<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">1200.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1313.066<br />
</td>
        <td style="text-align: right;">3.975<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1427.017<br />
</td>
        <td style="text-align: right;">8.836<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1541.922<br />
</td>
        <td style="text-align: right;">14.649<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1657.854<br />
</td>
        <td style="text-align: right;">21.491<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1774.895<br />
</td>
        <td style="text-align: right;">29.441<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1893.135<br />
</td>
        <td style="text-align: right;">38.589<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td style="text-align: right;">2012.670<br />
</td>
        <td style="text-align: right;">49.034<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td style="text-align: right;">2133.611<br />
</td>
        <td style="text-align: right;">60.884<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:13:&lt;h2&gt; --><h2 id="toc5"><a name="Examples for converting a 12edo instrument-13edo"></a><!-- ws:end:WikiTextHeadingRule:13 -->13edo</h2>
 <br />
Pure 2/1:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 13edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">94.538<br />
</td>
        <td style="text-align: right;">2.230<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">188.770<br />
</td>
        <td style="text-align: right;">4.154<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">282.679<br />
</td>
        <td style="text-align: right;">5.756<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">376.250<br />
</td>
        <td style="text-align: right;">7.019<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">469.465<br />
</td>
        <td style="text-align: right;">7.926<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">562.305<br />
</td>
        <td style="text-align: right;">8.458<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">654.751<br />
</td>
        <td style="text-align: right;">8.597<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">746.784<br />
</td>
        <td style="text-align: right;">8.322<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">838.383<br />
</td>
        <td style="text-align: right;">7.613<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">929.526<br />
</td>
        <td style="text-align: right;">6.449<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">1020.193<br />
</td>
        <td style="text-align: right;">4.808<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1110.358<br />
</td>
        <td style="text-align: right;">2.666<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1200.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1289.093<br />
</td>
        <td style="text-align: right;">-3.215<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1377.612<br />
</td>
        <td style="text-align: right;">-7.004<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1465.530<br />
</td>
        <td style="text-align: right;">-11.393<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1552.822<br />
</td>
        <td style="text-align: right;">-16.409<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td style="text-align: right;">1639.458<br />
</td>
        <td style="text-align: right;">-22.080<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td style="text-align: right;">1725.412<br />
</td>
        <td style="text-align: right;">-28.434<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td style="text-align: right;">1810.654<br />
</td>
        <td style="text-align: right;">-35.500<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td style="text-align: right;">1895.155<br />
</td>
        <td style="text-align: right;">-43.307<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td style="text-align: right;">1978.883<br />
</td>
        <td style="text-align: right;">-51.886<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td style="text-align: right;">2061.810<br />
</td>
        <td style="text-align: right;">-61.267<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:15:&lt;h2&gt; --><h2 id="toc6"><a name="Examples for converting a 12edo instrument-14edo"></a><!-- ws:end:WikiTextHeadingRule:15 -->14edo</h2>
 <br />
Pure 2/1:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 14edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">89.903<br />
</td>
        <td style="text-align: right;">4.189<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">179.269<br />
</td>
        <td style="text-align: right;">7.841<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">268.074<br />
</td>
        <td style="text-align: right;">10.931<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">356.292<br />
</td>
        <td style="text-align: right;">13.435<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">443.896<br />
</td>
        <td style="text-align: right;">15.324<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">530.859<br />
</td>
        <td style="text-align: right;">16.573<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">617.153<br />
</td>
        <td style="text-align: right;">17.153<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">702.749<br />
</td>
        <td style="text-align: right;">17.035<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">787.619<br />
</td>
        <td style="text-align: right;">16.190<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">871.731<br />
</td>
        <td style="text-align: right;">14.588<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">955.057<br />
</td>
        <td style="text-align: right;">12.200<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1037.564<br />
</td>
        <td style="text-align: right;">8.993<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1119.223<br />
</td>
        <td style="text-align: right;">4.937<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1200.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1279.864<br />
</td>
        <td style="text-align: right;">-5.850<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1358.784<br />
</td>
        <td style="text-align: right;">-12.645<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1436.727<br />
</td>
        <td style="text-align: right;">-20.416<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td style="text-align: right;">1513.660<br />
</td>
        <td style="text-align: right;">-29.197<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td style="text-align: right;">1589.553<br />
</td>
        <td style="text-align: right;">-39.019<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td style="text-align: right;">1664.373<br />
</td>
        <td style="text-align: right;">-49.913<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td style="text-align: right;">1738.090<br />
</td>
        <td style="text-align: right;">-61.910<br />
</td>
    </tr>
</table>

<br />
Max error limited to 10 cents:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 14edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">88.925<br />
</td>
        <td style="text-align: right;">3.210<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">177.267<br />
</td>
        <td style="text-align: right;">5.839<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">265.002<br />
</td>
        <td style="text-align: right;">7.859<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">352.101<br />
</td>
        <td style="text-align: right;">9.244<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">438.538<br />
</td>
        <td style="text-align: right;">9.966<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">524.283<br />
</td>
        <td style="text-align: right;">9.997<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">609.307<br />
</td>
        <td style="text-align: right;">9.307<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">693.580<br />
</td>
        <td style="text-align: right;">7.866<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">777.073<br />
</td>
        <td style="text-align: right;">5.645<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">859.755<br />
</td>
        <td style="text-align: right;">2.612<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">941.593<br />
</td>
        <td style="text-align: right;">-1.264<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1022.558<br />
</td>
        <td style="text-align: right;">-6.014<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1102.616<br />
</td>
        <td style="text-align: right;">-11.670<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1181.736<br />
</td>
        <td style="text-align: right;">-18.264<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1259.886<br />
</td>
        <td style="text-align: right;">-25.829<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1337.033<br />
</td>
        <td style="text-align: right;">-34.395<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1413.146<br />
</td>
        <td style="text-align: right;">-43.996<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td style="text-align: right;">1488.194<br />
</td>
        <td style="text-align: right;">-54.663<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td style="text-align: right;">1562.144<br />
</td>
        <td style="text-align: right;">-66.427<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:17:&lt;h2&gt; --><h2 id="toc7"><a name="Examples for converting a 12edo instrument-15edo"></a><!-- ws:end:WikiTextHeadingRule:17 -->15edo</h2>
 <br />
Pure 2/1:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 15edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">85.927<br />
</td>
        <td style="text-align: right;">5.927<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">171.140<br />
</td>
        <td style="text-align: right;">11.140<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">255.611<br />
</td>
        <td style="text-align: right;">15.611<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">339.310<br />
</td>
        <td style="text-align: right;">19.310<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">422.204<br />
</td>
        <td style="text-align: right;">22.204<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">504.264<br />
</td>
        <td style="text-align: right;">24.264<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">585.458<br />
</td>
        <td style="text-align: right;">25.458<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">665.754<br />
</td>
        <td style="text-align: right;">25.754<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">745.120<br />
</td>
        <td style="text-align: right;">25.120<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">823.524<br />
</td>
        <td style="text-align: right;">23.524<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">900.935<br />
</td>
        <td style="text-align: right;">20.935<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">977.319<br />
</td>
        <td style="text-align: right;">17.319<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1052.645<br />
</td>
        <td style="text-align: right;">12.645<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1126.883<br />
</td>
        <td style="text-align: right;">6.883<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1200.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1271.967<br />
</td>
        <td style="text-align: right;">-8.033<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1342.754<br />
</td>
        <td style="text-align: right;">-17.246<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td style="text-align: right;">1412.333<br />
</td>
        <td style="text-align: right;">-27.667<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td style="text-align: right;">1480.675<br />
</td>
        <td style="text-align: right;">-39.325<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td style="text-align: right;">1547.754<br />
</td>
        <td style="text-align: right;">-52.246<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td style="text-align: right;">1613.546<br />
</td>
        <td style="text-align: right;">-66.454<br />
</td>
    </tr>
</table>

<br />
Max error limited to 10 cents:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 15edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">83.670<br />
</td>
        <td style="text-align: right;">3.670<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">166.535<br />
</td>
        <td style="text-align: right;">6.535<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">248.564<br />
</td>
        <td style="text-align: right;">8.564<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">329.727<br />
</td>
        <td style="text-align: right;">9.727<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">409.990<br />
</td>
        <td style="text-align: right;">9.990<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">489.322<br />
</td>
        <td style="text-align: right;">9.322<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">567.691<br />
</td>
        <td style="text-align: right;">7.691<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">645.065<br />
</td>
        <td style="text-align: right;">5.065<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">721.412<br />
</td>
        <td style="text-align: right;">1.412<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">796.700<br />
</td>
        <td style="text-align: right;">-3.300<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">870.897<br />
</td>
        <td style="text-align: right;">-9.103<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">943.974<br />
</td>
        <td style="text-align: right;">-16.026<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1015.899<br />
</td>
        <td style="text-align: right;">-24.101<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1086.643<br />
</td>
        <td style="text-align: right;">-33.357<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1156.178<br />
</td>
        <td style="text-align: right;">-43.822<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1224.475<br />
</td>
        <td style="text-align: right;">-55.525<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1291.509<br />
</td>
        <td style="text-align: right;">-68.491<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:19:&lt;h2&gt; --><h2 id="toc8"><a name="Examples for converting a 12edo instrument-16edo"></a><!-- ws:end:WikiTextHeadingRule:19 -->16edo</h2>
 <br />
Pure 2/1:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 16edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">82.483<br />
</td>
        <td style="text-align: right;">7.483<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">164.117<br />
</td>
        <td style="text-align: right;">14.117<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">244.868<br />
</td>
        <td style="text-align: right;">19.868<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">324.706<br />
</td>
        <td style="text-align: right;">24.706<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">403.598<br />
</td>
        <td style="text-align: right;">28.598<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">481.511<br />
</td>
        <td style="text-align: right;">31.511<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">558.415<br />
</td>
        <td style="text-align: right;">33.415<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">634.278<br />
</td>
        <td style="text-align: right;">34.278<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">709.066<br />
</td>
        <td style="text-align: right;">34.066<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">782.751<br />
</td>
        <td style="text-align: right;">32.751<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">855.300<br />
</td>
        <td style="text-align: right;">30.300<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">926.683<br />
</td>
        <td style="text-align: right;">26.683<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">996.873<br />
</td>
        <td style="text-align: right;">21.873<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1065.840<br />
</td>
        <td style="text-align: right;">15.840<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1133.558<br />
</td>
        <td style="text-align: right;">8.558<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1200.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td style="text-align: right;">1265.142<br />
</td>
        <td style="text-align: right;">-9.858<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td style="text-align: right;">1328.962<br />
</td>
        <td style="text-align: right;">-21.038<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td style="text-align: right;">1391.438<br />
</td>
        <td style="text-align: right;">-33.562<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td style="text-align: right;">1452.550<br />
</td>
        <td style="text-align: right;">-47.450<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td style="text-align: right;">1512.281<br />
</td>
        <td style="text-align: right;">-62.719<br />
</td>
    </tr>
</table>

<br />
Max error limited to 10 cents:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 16edo<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">78.993<br />
</td>
        <td style="text-align: right;">3.993<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">157.011<br />
</td>
        <td style="text-align: right;">7.011<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">234.022<br />
</td>
        <td style="text-align: right;">9.022<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">309.995<br />
</td>
        <td style="text-align: right;">9.995<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">384.898<br />
</td>
        <td style="text-align: right;">9.898<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">458.700<br />
</td>
        <td style="text-align: right;">8.700<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">531.369<br />
</td>
        <td style="text-align: right;">6.369<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">602.877<br />
</td>
        <td style="text-align: right;">2.877<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">673.193<br />
</td>
        <td style="text-align: right;">-1.807<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">742.290<br />
</td>
        <td style="text-align: right;">-7.710<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">810.140<br />
</td>
        <td style="text-align: right;">-14.860<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">876.717<br />
</td>
        <td style="text-align: right;">-23.283<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">941.997<br />
</td>
        <td style="text-align: right;">-33.003<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">1005.957<br />
</td>
        <td style="text-align: right;">-44.043<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">1068.574<br />
</td>
        <td style="text-align: right;">-56.426<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">1129.830<br />
</td>
        <td style="text-align: right;">-70.170<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:21:&lt;h2&gt; --><h2 id="toc9"><a name="Examples for converting a 12edo instrument-Bohlen-Pierce"></a><!-- ws:end:WikiTextHeadingRule:21 -->Bohlen-Pierce</h2>
 <br />
As an example of a non-octave temperament, let's try to approximate the equal-tempered <a class="wiki_link" href="/Bohlen-Pierce">Bohlen-Pierce</a> scale (13ed3) by moving the bridge of a 12edo guitar.<br />
<br />
The naive method of making the 13th fret an exact 3/1 would be terrible:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 13ed3<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">127.235<br />
</td>
        <td style="text-align: right;">-19.072<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">256.565<br />
</td>
        <td style="text-align: right;">-36.050<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">388.191<br />
</td>
        <td style="text-align: right;">-50.732<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">522.340<br />
</td>
        <td style="text-align: right;">-62.891<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">659.270<br />
</td>
        <td style="text-align: right;">-72.269<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">799.275<br />
</td>
        <td style="text-align: right;">-78.572<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">942.691<br />
</td>
        <td style="text-align: right;">-81.462<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">1089.910<br />
</td>
        <td style="text-align: right;">-80.552<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">1241.382<br />
</td>
        <td style="text-align: right;">-75.387<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td style="text-align: right;">1397.638<br />
</td>
        <td style="text-align: right;">-65.439<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td style="text-align: right;">1559.303<br />
</td>
        <td style="text-align: right;">-50.081<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td style="text-align: right;">1727.124<br />
</td>
        <td style="text-align: right;">-28.568<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td style="text-align: right;">1902.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td style="text-align: right;">2085.028<br />
</td>
        <td style="text-align: right;">36.720<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td style="text-align: right;">2277.566<br />
</td>
        <td style="text-align: right;">82.951<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td style="text-align: right;">2481.323<br />
</td>
        <td style="text-align: right;">140.400<br />
</td>
    </tr>
</table>

<br />
Even though the error of the 13th fret is 0, the error of frets 7 and 8 is about 80 cents, which is unacceptable.<br />
<br />
A much more satisfactory solution is to minimize the maximum error over the first 6 frets:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 13ed3<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">138.788<br />
</td>
        <td style="text-align: right;">-7.520<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">280.853<br />
</td>
        <td style="text-align: right;">-11.763<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">426.563<br />
</td>
        <td style="text-align: right;">-12.360<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">576.345<br />
</td>
        <td style="text-align: right;">-8.886<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">730.697<br />
</td>
        <td style="text-align: right;">-0.841<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">890.206<br />
</td>
        <td style="text-align: right;">12.360<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">1055.569<br />
</td>
        <td style="text-align: right;">31.415<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">1227.620<br />
</td>
        <td style="text-align: right;">57.158<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td style="text-align: right;">1407.376<br />
</td>
        <td style="text-align: right;">90.606<br />
</td>
    </tr>
</table>

<br />
Or even just the first 5, for better accuracy:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>Fret number<br />
</th>
        <th>Cents<br />
</th>
        <th>Deviation from 13e3<br />
</th>
    </tr>
    <tr>
        <td>0 (nut)<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
        <td style="text-align: right;">0.000<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td style="text-align: right;">140.285<br />
</td>
        <td style="text-align: right;">-6.023<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td style="text-align: right;">284.014<br />
</td>
        <td style="text-align: right;">-8.601<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td style="text-align: right;">431.581<br />
</td>
        <td style="text-align: right;">-7.343<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td style="text-align: right;">583.443<br />
</td>
        <td style="text-align: right;">-1.787<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td style="text-align: right;">740.140<br />
</td>
        <td style="text-align: right;">8.601<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td style="text-align: right;">902.305<br />
</td>
        <td style="text-align: right;">24.459<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td style="text-align: right;">1070.696<br />
</td>
        <td style="text-align: right;">46.543<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td style="text-align: right;">1246.229<br />
</td>
        <td style="text-align: right;">75.768<br />
</td>
    </tr>
</table>

<br />
If the open strings are tuned in 9/7s or 7/5s, this makes a perfectly playable BP guitar with fret error under 9 cents. The only restriction is that you should never play frets 6 or above, because they're increasingly out of tune.</body></html>