Title1

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.1 -8.5 -8.2 +4.1 -12.6 +19.5 -12.3 -16.9 +0.0 +34.3 -16.7
Relative (%) -4.1 -8.5 -8.2 +4.1 -12.6 +19.6 -12.4 -17.0 +0.0 +34.4 -16.7
Steps
(reduced)
12
(12)
19
(19)
24
(24)
28
(28)
31
(31)
34
(34)
36
(36)
38
(38)
40
(0)
42
(2)
43
(3)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.4 +3.4 +6.7 +21.5 +6.7 +40.7 +10.1 +6.7 +24.9 -39.9 +10.1
Relative (%) +3.3 +3.3 +6.7 +21.4 +6.7 +40.6 +10.0 +6.7 +24.8 -39.8 +10.0
Steps
(reduced)
12
(5)
19
(5)
24
(3)
28
(0)
31
(3)
34
(6)
36
(1)
38
(3)
40
(5)
41
(6)
43
(1)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +0.0 +2.5 +16.6 +1.2 +34.7 +3.7 +0.0 +17.8 -47.1 +2.5
Relative (%) +1.2 +0.0 +2.5 +16.6 +1.2 +34.6 +3.7 +0.0 +17.8 -47.1 +2.5
Steps
(reduced)
12
(12)
19
(0)
24
(5)
28
(9)
31
(12)
34
(15)
36
(17)
38
(0)
40
(2)
41
(3)
43
(5)
Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.8 -0.8 +1.5 +15.5 +0.0 +33.3 +2.3 -1.5 +16.2 -48.7 +0.8
Relative (%) +0.8 -0.8 +1.5 +15.4 +0.0 +33.3 +2.3 -1.5 +16.2 -48.7 +0.8
Steps
(reduced)
12
(12)
19
(19)
24
(24)
28
(28)
31
(0)
34
(3)
36
(5)
38
(7)
40
(9)
41
(10)
43
(12)

Title2

Octave stretch or compression

58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly compressing the octave is acceptable, using tunings such as 92edt or 150ed6.

What follows is a comparison of stretched- and compressed-octave 58edo tunings.

288zpi
  • Step size: 20.736 ¢, octave size: NNN ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.69 +5.76 +5.38 -7.69 +8.44 -9.59 +8.06 -9.22 -5.00 -4.12 -9.60
Relative (%) +13.0 +27.8 +25.9 -37.1 +40.7 -46.3 +38.9 -44.5 -24.1 -19.9 -46.3
Step 58 92 116 134 150 162 174 183 192 200 207
Approximation of harmonics in ZPINAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -3.02 -6.91 -1.93 -9.98 +9.48 -6.53 +3.54 -2.31 -3.84 -1.43 +4.56 -6.92
Relative (%) -14.6 -33.3 -9.3 -48.1 +45.7 -31.5 +17.1 -11.2 -18.5 -6.9 +22.0 -33.3
Step 214 220 226 231 237 241 246 250 254 258 262 265
58edo
  • Step size: 20.690 ¢, octave size: NNN ¢

Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in EDONAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.00 +1.49 +0.00 +6.79 +1.49 +3.59 +0.00 +2.99 +6.79 +7.30 +1.49
Relative (%) +0.0 +7.2 +0.0 +32.8 +7.2 +17.3 +0.0 +14.4 +32.8 +35.3 +7.2
Steps
(reduced)
58
(0)
92
(34)
116
(0)
135
(19)
150
(34)
163
(47)
174
(0)
184
(10)
193
(19)
201
(27)
208
(34)
Approximation of harmonics in EDONAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +7.75 +3.59 +8.28 +0.00 -1.51 +2.99 -7.86 +6.79 +5.08 +7.30 -7.58 +1.49
Relative (%) +37.4 +17.3 +40.0 +0.0 -7.3 +14.4 -38.0 +32.8 +24.6 +35.3 -36.7 +7.2
Steps
(reduced)
215
(41)
221
(47)
227
(53)
232
(0)
237
(5)
242
(10)
246
(14)
251
(19)
255
(23)
259
(27)
262
(30)
266
(34)
150ed6
  • Step size: NNN ¢, octave size: 1199.42 ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.58 +0.58 -1.15 +5.45 +0.00 +1.97 -1.73 +1.15 +4.87 +5.30 -0.58
Relative (%) -2.8 +2.8 -5.6 +26.3 +0.0 +9.5 -8.4 +5.6 +23.5 +25.6 -2.8
Steps
(reduced)
58
(58)
92
(92)
116
(116)
135
(135)
150
(0)
163
(13)
174
(24)
184
(34)
193
(43)
201
(51)
208
(58)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +5.61 +1.39 +6.02 -2.31 -3.87 +0.58 -10.31 +4.29 +2.54 +4.72 -10.19 -1.15
Relative (%) +27.1 +6.7 +29.1 -11.2 -18.7 +2.8 -49.8 +20.7 +12.3 +22.8 -49.3 -5.6
Steps
(reduced)
215
(65)
221
(71)
227
(77)
232
(82)
237
(87)
242
(92)
246
(96)
251
(101)
255
(105)
259
(109)
262
(112)
266
(116)
92edt
  • Step size: NNN ¢, octave size: 1199.06 ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.

Approximation of harmonics in EDONOI
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.94 +0.00 -1.88 +4.60 -0.94 +0.94 -2.82 +0.00 +3.66 +4.04 -1.88
Relative (%) -4.6 +0.0 -9.1 +22.2 -4.6 +4.6 -13.7 +0.0 +17.7 +19.5 -9.1
Steps
(reduced)
58
(58)
92
(0)
116
(24)
135
(43)
150
(58)
163
(71)
174
(82)
184
(0)
193
(9)
201
(17)
208
(24)
Approximation of harmonics in EDONOI (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +4.26 +0.00 +4.60 -3.77 -5.35 -0.94 +8.82 +2.72 +0.94 +3.10 +8.84 -2.82
Relative (%) +20.6 +0.0 +22.2 -18.2 -25.9 -4.6 +42.7 +13.1 +4.6 +15.0 +42.7 -13.7
Steps
(reduced)
215
(31)
221
(37)
227
(43)
232
(48)
237
(53)
242
(58)
247
(63)
251
(67)
255
(71)
259
(75)
263
(79)
266
(82)
289zpi / 58et, 7-limit WE tuning
  • Step size: 20.666 ¢, octave size: 1198.63 ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 7-limit WE tuning and 7-limit TE tuning both do this. The tuning 289zpi also does this, it's octave differing from 7-limit WE by only 0.06 ¢.

Approximation of harmonics in ZPINAME
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.37 -0.68 -2.74 +3.60 -2.06 -0.27 -4.12 -1.37 +2.22 +2.55 -3.43
Relative (%) -6.6 -3.3 -13.3 +17.4 -9.9 -1.3 -19.9 -6.6 +10.8 +12.3 -16.6
Step 58 92 116 135 150 163 174 184 193 201 208
Approximation of harmonics in ZPINAME (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +2.66 -1.64 +2.91 -5.49 -7.11 -2.74 +6.99 +0.85 -0.95 +1.18 +6.88 -4.80
Relative (%) +12.9 -7.9 +14.1 -26.6 -34.4 -13.2 +33.8 +4.1 -4.6 +5.7 +33.3 -23.2
Step 215 221 227 232 237 242 247 251 255 259 263 266
58et, 13-limit WE tuning
  • Step size: 20.663 ¢, octave size: 1198.45 ¢

_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.

Approximation of harmonics in ETNAME, 13-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.55 -0.96 -3.09 +3.19 -2.51 -0.76 -4.64 -1.92 +1.65 +1.95 -4.05
Relative (%) -7.5 -4.6 -15.0 +15.4 -12.1 -3.7 -22.4 -9.3 +8.0 +9.4 -19.6
Step 58 92 116 135 150 163 174 184 193 201 208
Approximation of harmonics in ETNAME, 13-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +2.02 -2.30 +2.23 -6.18 -7.82 -3.46 +6.25 +0.10 -1.72 +0.40 +6.09 -5.60
Relative (%) +9.8 -11.1 +10.8 -29.9 -37.9 -16.8 +30.2 +0.5 -8.3 +1.9 +29.5 -27.1
Step 215 221 227 232 237 242 247 251 255 259 263 266