← 3159810edo 3159811edo 3159812edo →
Prime factorization 29 × 108959
Step size 0.00037977 ¢ 
Fifth 1848371\3159811 (701.955 ¢)
Semitones (A1:m2) 299353:237578 (113.7 ¢ : 90.22 ¢)
Consistency limit 65
Distinct consistency limit 65

3159811 equal divisions of the octave (abbreviated 3159811edo or 3159811ed2), also called 3159811-tone equal temperament (3159811tet) or 3159811 equal temperament (3159811et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 3159811 equal parts of about 0.00038 ¢ each. Each step represents a frequency ratio of 21/3159811, or the 3159811th root of 2.

3159811edo is consistent in the 65-odd-limit with a lower relative error than any previous equal temperaments in the 61-limit. It is the smallest EDO which is purely consistent[idiosyncratic term] in the 63-odd-limit (i.e. does not exceed 25% relative error on the first 63 harmonics of the harmonic series).

Theory

Prime harmonics

Approximation of odd harmonics in 3159811edo (3–15)
Harmonic 3 5 7 9 11 13 15
Error Absolute (¢) +0.00002113 +0.00002452 +0.00001382 +0.00004226 -0.00003126 -0.00004793 +0.00004565
Relative (%) +5.6 +6.5 +3.6 +11.1 -8.2 -12.6 +12.0
Steps
(reduced)
5008182
(1848371)
7336854
(1017232)
8870711
(2551089)
10016364
(536931)
10931150
(1451717)
11692690
(2213257)
12345036
(2865603)
Approximation of odd harmonics in 3159811edo (17–31)
Harmonic 17 19 21 23 25 27 29 31
Error Absolute (¢) -0.00001818 -0.00003197 +0.00003494 +0.00006535 +0.00004904 +0.00006338 +0.00008120 +0.00000087
Relative (%) -4.8 -8.4 +9.2 +17.2 +12.9 +16.7 +21.4 +0.2
Steps
(reduced)
12915610
(276366)
13422648
(783404)
13878893
(1239649)
14293601
(1654357)
14673708
(2034464)
15024546
(2385302)
15350302
(2711058)
15654324
(3015080)
Approximation of odd harmonics in 3159811edo (33–47)
Harmonic 33 35 37 39 41 43 45 47
Error Absolute (¢) -0.00001013 +0.00003834 -0.00001850 -0.00002681 +0.00009218 -0.00002310 +0.00006678 +0.00001747
Relative (%) -2.7 +10.1 -4.9 -7.1 +24.3 -6.1 +17.6 +4.6
Steps
(reduced)
15939332
(140277)
16207565
(408510)
16460888
(661833)
16700872
(901817)
16928852
(1129797)
17145971
(1346916)
17353218
(1554163)
17551451
(1752396)
Approximation of odd harmonics in 3159811edo (49–63)
Harmonic 49 51 53 55 57 59 61 63
Error Absolute (¢) +0.00002763 +0.00000295 -0.00002258 -0.00000674 -0.00001084 -0.00008220 -0.00002937 +0.00005607
Relative (%) +7.3 +0.8 -5.9 -1.8 -2.9 -21.6 -7.7 +14.8
Steps
(reduced)
17741422
(1942367)
17923792
(2124737)
18099146
(2300091)
18268004
(2468949)
18430830
(2631775)
18588040
(2788985)
18740009
(2940954)
18887075
(3088020)

Scales

Harmonic scales

3159811edo accurately approximates the mode 32 of harmonic series. All interval pairs are distinguished.

Overtones 32 33 34 35 36 37 38 39
JI Ratios 1/1 33/32 17/16 35/32 9/8 37/32 19/16 39/32
… in cents 0 53.273 104.955 155.14 203.91 251.344 297.513 342.483
Degrees in 3159811edo 0 140277 276366 408510 536931 661833 783404 901817
Overtones 40 41 42 43 44 45 46 47
JI Ratios 5/4 41/32 21/16 43/32 11/8 45/32 23/16 47/32
… in cents 386.314 429.062 470.781 511.518 551.318 590.224 628.274 665.507
Degrees in 3159811edo 1017232 1129797 1239649 1346916 1451717 1554163 1654357 1752396
Overtones 48 49 50 51 52 53 54 55
JI Ratios 3/2 49/32 25/16 51/32 13/8 53/32 27/16 55/32
… in cents 701.955 737.652 772.627 806.91 840.528 873.505 905.865 937.632
Degrees in 3159811edo 1848371 1942367 2034464 2124737 2213257 2300091 2385302 2468949
Overtones 56 57 58 59 60 61 62 63 64
JI Ratios 7/4 57/32 29/16 59/32 15/8 61/32 31/16 63/32 2/1
… in cents 968.826 999.468 1029.577 1059.172 1088.269 1116.885 1145.036 1172.736 1200
Degrees in 3159811edo 2551089 2631775 2711058 2788985 2865603 2940954 3015080 3088020 3159811
  • The scale in adjacent steps is 140277, 136089, 132144, 128421, 124902, 121571, 118413, 115415, 112565, 109852, 107267, 104801, 102446, 100194, 98039, 95975, 93996, 92097, 90273, 88520, 86834, 85211, 83647, 82140, 80686, 79283, 77927, 76618, 75351, 74126, 72940, 71791.